\(\widehat{B}\) cắt đường chéo AC thành hai đ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2019

A B C D E

Trong tam giác ABC, gọi giao điểm đường phân giác của góc ABC với cạnh AC là E.

Theo đề ra, ta có:

\(AE=\frac{30}{7}m;EC=\frac{40}{7}m.\)

Theo tính chất đường phân giác, ta có: \(\frac{AE}{EC}=\frac{AB}{BC}\)

\(\Rightarrow\frac{AB}{BC}=\frac{4\frac{2}{7}}{5\frac{5}{7}}=\frac{\frac{30}{7}}{\frac{40}{7}}=\frac{3}{4}\)

\(\Rightarrow\frac{AB}{3}=\frac{BC}{4}\Rightarrow\frac{AB^2}{9}=\frac{BC}{16}^2\)

Áp dụng định lý Pitago vào tam giác vuông ABC, ta có:

\(AC^2=AB^2+BC^2\)

Mà \(AC=AE+EC\) nên:

\(AB^2+BC^2=\left(AE+EC\right)^2\)

\(=\left(4\frac{2}{7}+5\frac{5}{7}\right)^2=\left(\frac{30}{7}+\frac{40}{7}\right)^2=10^2=100\)

Mà:

\(\frac{AB^2}{9}=\frac{BC^2}{16}=\frac{AB^2+BC^2}{9+16}=\frac{AB^2+BC^2}{25}=\frac{100}{25}=4\)

\(\Rightarrow AB^2=9.4=36\Rightarrow AB=\sqrt{36}=6\left(m\right)\)

\(\Rightarrow BC^2=16.4=64\Rightarrow BC=\sqrt{64}=8\left(m\right)\)

Vậy AB = CD = 6 (m)

BC = AD = 8 (m)

5 tháng 7 2016

bài này dễ lắm

5 tháng 7 2016

Đường phân giác góc B cắt đường chéo AC tại M. Giả sử AM = \(\frac{30}{7}\left(m\right)\)thì CM = \(\frac{40}{7}\left(m\right)\)và AC = 10 (m)

Từ M dựng MI vuông góc với AB (I thuộc AB) => MI song song BC (vì cùng vuông với AB), theo Talet thì:

\(\frac{BI}{AB}=\frac{MC}{AC}=\frac{\frac{40}{7}}{10}=\frac{4}{7}\Rightarrow BI=\frac{4}{7}AB\)

Từ M dựng MK vuông góc với BC (K thuộc BC), tương tự ta có: \(BK=\frac{3}{7}BC\)

Mà tứ giác BIMK là hình vuông ( vì có 3 góc vuông B,I,K và đường chéo BH chia đôi góc B)

Nên BI = BK. Do đó: \(\frac{4}{7}AB=\frac{3}{7}BC\Rightarrow\frac{AB}{3}=\frac{BC}{4}=p\)(Đặt = p)

Tam giác BAC vuông tại B có AB = 3p; BC = 4p; theo Pitago thì đường chéo AC = 5p = 10(m) => p = 2(m)

=> AB = 3*2 = 6(m) và BC = 4*2 = 8(m)

Vậy, kích thước hình chữ nhật là 6m x 8 m.

Bài 1: 

Theo đề, ta có: \(\dfrac{AB}{BC}=\dfrac{30}{7}:\dfrac{40}{7}=\dfrac{3}{4}\) và \(AC=4+5+\dfrac{2}{7}+\dfrac{5}{7}=10\)

=>AB/3=BC/4

Đặt AB/3=BC/4=k

=>AB=3k; BC=4k

Xét ΔABC vuông tại B có \(AC^2=AB^2+BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=CD=6(cm); BC=AD=8(cm)

31 tháng 5 2017

Hệ thức lượng trong tam giác vuông

Hệ thức lượng trong tam giác vuông

16 tháng 6 2019

Không mất tính tổng quát, giả sử AB > BC.

Gọi E là giao điểm của tia phân giác \(\widehat{B}\) với AC.

Khi đó: \(\frac{AE}{CE}=\frac{4}{3}\)\(=\frac{AB}{BC}\); \(AC=70cm\)

Áp dụng định lí Pytago vào tam giác ABC vuông tại B, ta có:

\(AB^2+BC^2=AC^2\)\(AB^2+\frac{9}{16}.AB^2=4900\)

\(AB=56cm\Rightarrow BC=42cm\)

(*Đối với trường hợp AB < BC cũng làm tương tự)

Vậy AB = CD = 56cm; BC = AD = 42cm (Hoặc ngược lại)

Bài 1: 

Theo đề, ta có: \(\dfrac{AB}{BC}=\dfrac{30}{7}:\dfrac{40}{7}=\dfrac{3}{4}\) và \(AC=4+5+\dfrac{2}{7}+\dfrac{5}{7}=10\)

=>AB/3=BC/4

Đặt AB/3=BC/4=k

=>AB=3k; BC=4k

Xét ΔABC vuông tại B có \(AC^2=AB^2+BC^2\)

\(\Leftrightarrow25k^2=100\)

=>k=2

=>AB=CD=6(cm); BC=AD=8(cm)

6 tháng 8 2019

Bài làm:
Gọi E là giao của đường phân giác góc B với AC.
Áp dụng tính chất đường phân giác của tam giác đối với tg ABC có: BC/AB = EC/EA
=> BC/ AB = (4/2/7)/(5/5/7) = 3/4 ( giả sử BC<AB) => BC = (3/4)*AB (2)
Lại có AC = AE + EC = 4/2/7 + 5/5/7 = 10
Theo pitago ta có: AB^2 + BC^2 = AC^2 => AB^2 + (9/16)*AB^2 = 100
=> ( 25/16)*AB^2 = 100 => AB = 8 thay vào (2) tính được BC = 6
Vậy các kích thước của hình chữ nhật là: AB = CD = 8cm, BC = AD = 6cm

25 tháng 7 2019

cái hình thì mk gửi link trong ib nhé 

a) Gọi O là giao điểm của AC và BD 

\(\Delta OAB\) vuông tại O có \(OA^2+OB^2=AB^2=49\)

Lại có: \(\tan BAC=\tan OAB=\frac{OB}{OA}=\frac{3}{4}\)\(\Leftrightarrow\)\(\frac{OA^2}{16}=\frac{OB^2}{9}=\frac{OA^2+OB^2}{16+9}=\frac{49}{25}\)

\(\Rightarrow\)\(\hept{\begin{cases}\frac{OA}{4}=\frac{7}{5}\\\frac{OB}{3}=\frac{7}{5}\end{cases}}\Leftrightarrow\hept{\begin{cases}OA=\frac{28}{5}\left(cm\right)\\OB=\frac{21}{5}\left(cm\right)\end{cases}}\)

\(\Rightarrow\)\(\hept{\begin{cases}AC=2OA=\frac{56}{5}\left(cm\right)\\BD=2OB=\frac{42}{5}\left(cm\right)\end{cases}}\)

\(\Rightarrow\)\(S_{ABCD}=\frac{1}{2}AC.BD=\frac{1}{2}.\frac{56}{5}.\frac{42}{5}=\frac{1176}{25}=47,04\left(cm^2\right)\)

b) Gọi E, F lần lược là giao điểm của BD với MN và PQ 

tam giác ABD có MQ // BD 

\(\Rightarrow\)\(\frac{MQ}{BD}=\frac{MA}{AB}\) ( hệ quả định lí Talet ) 

tam giác OAD có QF // OA 

\(\Rightarrow\)\(\frac{QF}{OA}=\frac{DQ}{AQ}=\frac{MB}{AB}\) ( hệ quả định lí Talet ) 

\(\Rightarrow\)\(\frac{MQ}{BD}+\frac{QF}{OA}=\frac{MA+MB}{AB}=1\)

\(\Rightarrow\)\(1\ge2\sqrt{\frac{MQ.QF}{BD.OA}}\)\(\Leftrightarrow\)\(MQ.QF\le\frac{1}{4}BD.OA\)

Tương tự, ta cũng có: \(NP.PF\le\frac{1}{4}BD.OC\)

\(\Rightarrow\)\(MQ.QF+NP.PF=S_{MEFQ}+S_{NEFP}=S_{MNPQ}\le\frac{1}{4}BD.AC=\frac{1}{2}S_{ABCD}=23,52\left(cm^2\right)\)

Dấu "=" xảy ra khi M, N, P, Q là trung điểm của AB, BC, CD, DA