Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔIAD và ΔIBC có
\(\widehat{IAD}=\widehat{IBC}\)(gt)
\(\widehat{AID}=\widehat{BIC}\)(hai góc đối đỉnh)
Do đó: ΔIAD\(\sim\)ΔIBC(g-g)
b)
Sửa đề: \(IA\cdot IC=IB\cdot ID\)
Ta có: ΔIAD\(\sim\)ΔIBC(cmt)
nên \(\dfrac{IA}{IB}=\dfrac{ID}{IC}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(IA\cdot IC=IB\cdot ID\)(đpcm)
a, Dễ CM AEOF là hình chữ nhật vì có 3 góc vuông
=>AO=EF
Mà AO=OC=AC/2 (O là tr.điểm AC do ABCD là hình chữ nhật)
=>EF=AC/2=12/2=6cm
b) CM \(\Delta AHO=\Delta CKO\left(ch-gn\right)\) => AH=KC
Mà AH//KC (cùng vuông góc với BD)
=>AHCK là hình bình hành => AK//HC
c, Có OA=OB=OC=OD (do ABCD là hình chữ nhật)
tam giác OAD cân có OE là đg cao nên cũng là trung tuyến => F là tr.điểm AD
Xét tam giác AHD vuông ở H có F là tr.điểm AD nên HF là trung tuyến ứng với cạnh huyền AD => HF=AF (=1/2AH)
Mà AF=OE (AEOF là hình chữ nhật)
=>HF=OE
Dễ CM EF là đg trung bình của tam giác ABD => EF//BD hay EF//OH=>EFHO là hình thang,mà HF=OE
=>EFHO là hình thang cân