Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ABCD là hình chữ nhật
=>AC cắt BD tại trung điểm của mỗi đường và AC=BD
=>O là trung điểm chung của AC và BD
ABCD là hình chữ nhật
=>AB=CD=2a; BC=AD
O là trung điểm của AC
=>\(AC=2\cdot AO=2a\cdot\sqrt{5}\)
=>\(BD=2a\sqrt{5}\)
ABCD là hình chữ nhật
=>ΔABC vuông tại B
=>\(BA^2+BC^2=AC^2\)
=>\(BC^2=AC^2-AB^2=\left(2a\sqrt{5}\right)^2-\left(2a\right)^2=20a^2-4a^2=16a^2\)
=>BC=4a
=>\(\left|\overrightarrow{BC}\right|=4a\)
1) Các vecto bằng vecto EF là:
\(\overrightarrow{EF}=\overrightarrow{DO}=\overrightarrow{OA}=\overrightarrow{CB}\)
\(\left|\overrightarrow{AB}-\overrightarrow{BC}\right|=\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=BD=a\sqrt{6}\)
Đặt AD=a =>DC=2a
Ta có : AD2+DE2=AE2(theo py ta go)
=> AE=\(\frac{\sqrt{10}a}{3}\) =>CosDAE=\(\frac{a}{\frac{\sqrt{10}a}{3}}=\frac{3}{\sqrt{10}}\)
Gọi \(\overrightarrow{n_{AD}}\left(m,n\right)\)
CosDAE=\(\frac{\left|\overrightarrow{n_{AD}}\cdot\overrightarrow{n_{AE}}\right|}{\left|\overrightarrow{n_{AD}}\right|\left|\overrightarrow{n_{AE}}\right|}\)
\(\Rightarrow\frac{3}{\sqrt{10}}=\frac{\left|2m+\frac{2n}{3}\right|}{\sqrt{m^2+n^2}\sqrt{4+\frac{4}{9}}}\)
\(\Rightarrow4n^2-3mn=0\Rightarrow n\left(4n-3m\right)=0\)
TH1:chọn n=0=>m=1
=>D(1,0)
Ta có :\(\overrightarrow{EC}=-5\overrightarrow{ED}\)
\(\Rightarrow C\left(5,-6\right)\)=>I(3,-5/2)=>B(...)
TH2: chọn n=3=>m=4
=>AD:4x+3y-7=0
Do AD vuông góc vs DC=>DC:3x-4y-9=0
=>D(11/5,-3/5)
Tương tự như trên
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=a\sqrt{5}\)
\(\left|\overrightarrow{BC}-\overrightarrow{OD}\right|=\left|\overrightarrow{AD}+\overrightarrow{DO}\right|=AO=\dfrac{a\sqrt{5}}{2}\)
Mình không biết trả lời.Mình mới học lớp 5 thôi .Mong bạn thông cảm nhé!
Lời giải:
1.
$\overrightarrow{2AO}-\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{BC}=\overrightarrow{AB}$
Độ dài: $|\overrightarrow{AB}|=a$
2.
Trên tia đối của $AC$ lấy $T$ sao cho $TA=OC$
Trên tia đối của $BA$ lấy $K$ sao cho $BA=BK$
$\overrightarrow{OC}+2\overrightarrow{AB}=\overrightarrow{TA}+\overrightarrow{AB}+\overrightarrow{AB}$
$=\overrightarrow{TB}+\overrightarrow{AB}$
$=\overrightarrow{TB}+\overrightarrow{BK}=\overrightarrow{TK}$
Ta có:
$TC=3OC=\frac{3}{2}AC=\frac{3}{2}\sqrt{(2a)^2+a^2}=\frac{3\sqrt{5}}{2}a$
$CK=\sqrt{BC^2+BK^2}=\sqrt{(2a)^2+a^2}=\sqrt{5}a$
$\cos \widehat{TCK}=\cos 2\widehat{TCB}=2\cos^2 \widehat{TCB}-1$
$=2(\frac{CB}{AC})^2-1=\frac{3}{5}$
Áp dụng định lý cos:
$TK^2=TC^2+CK^2-2TC.CK\cos \widehat{TCK}$
$=\frac{45}{4}a^2+5a^2-9a^2=\frac{29}{4}a^2$
$\Rightarrow TK=\frac{\sqrt{29}}{2}a$
3. Trên tia đối tia $CD$ lấy $M$ sao cho $CM=CD$
$3\overrightarrow{AB}+2\overrightarrow{OD}=3\overrightarrow{DC}+2\overrightarrow{OD}=2\overrightarrow{OC}+\overrightarrow{DC}$
$=\overrightarrow{AC}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{CM}=\overrightarrow{AM}$
$AM=\sqrt{AD^2+DM^2}=\sqrt{(2a)^2+(2a)^2}=2\sqrt{2}a$
Hình vẽ: