Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
SAMQ = \(\dfrac{2}{3}\)SABQ (vì hai tam giác có chung chiều cao hạ từ đỉnh Q xuống đáy AB và AM = \(\dfrac{2}{3}\) AB)
SABQ = \(\dfrac{1}{2}\)SABD (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AD và AQ = \(\dfrac{1}{2}\)AD)
SABD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)
SAMQ = \(\dfrac{2}{3}\times\dfrac{1}{2}\times\dfrac{1}{2}\)SABCD = 216 \(\times\) \(\dfrac{1}{6}\) = 36 (cm2)
SBMN = \(\dfrac{1}{3}\)BMC (vì hai tam giác có chung chiều cao hạ từ điỉnh M xuống đáy BC và BN = \(\dfrac{1}{3}\)BC)
BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB
SBCM = \(\dfrac{1}{3}\)SACB (vì hai tam giâc có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM = \(\dfrac{1}{3}\)AB)
SABC = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)
SBMN = \(\dfrac{1}{3}\times\dfrac{1}{3}\times\dfrac{1}{2}\) = \(\dfrac{1}{18}\)SABCD = 216 \(\times\) 18 = 12 (cm2)
CN = BC - BN = BC - \(\dfrac{1}{3}\)BC = \(\dfrac{2}{3}\)BC
SCPN = \(\dfrac{2}{3}\)SBPC (vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{2}{3}\)BC)
SPBC = \(\dfrac{1}{2}\)SBCD (vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy CD và PC = \(\dfrac{1}{2}\)CD)
SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)
SCPN = \(\dfrac{2}{3}\times\)\(\dfrac{1}{2}\times\)\(\dfrac{1}{2}\)SABCD =\(\dfrac{1}{6}\)SABCD = 216 \(\times\) \(\dfrac{1}{6}\) = 36 (cm2)
SDPQ = \(\dfrac{1}{2}\)SDQC (vì hai tam giác có chung chiều cao hạ từ đỉnh Q xuống đáy DC và DP = \(\dfrac{1}{2}\)DC)
SDQC = \(\dfrac{1}{2}\)SACD (vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AD và DQ = \(\dfrac{1}{2}\)AD )
SACD = \(\dfrac{1}{2}\) SABCD (vì ABCD là hình chữ nhật)
SDPQ = \(\dfrac{1}{2}\times\dfrac{1}{2}\times\dfrac{1}{2}\)SABCD = 216 \(\times\) \(\dfrac{1}{8}\) = 27 (cm2)
Diện tích tứ giác MNPQ là:
216 - ( 36 + 12 + 36 + 27) = 105 (cm2)
Đáp số: 105 cm2
A B C D M N Q P
Ta có: SAMP = \(\frac{1}{2}\)x AM x AP = \(\frac{1}{2}\)x (\(\frac{3}{4}\)x AB) x (\(\frac{1}{2}\) x AD) = (\(\frac{1}{2}\) x\(\frac{3}{4}\) x \(\frac{1}{2}\)) x AB x AD = \(\frac{3}{16}\)x SABCD = \(\frac{3}{16}\) x 192 = 36 cm2
SDPQ = \(\frac{1}{2}\) x PD x DQ = \(\frac{1}{2}\) x (\(\frac{1}{2}\)x AD) x (\(\frac{1}{2}\)x DC) = \(\frac{1}{8}\)x AD x DC = \(\frac{1}{8}\)x SABCD = \(\frac{1}{8}\)x 192 = 24 cm2
Tương tự, SNCQ = \(\frac{3}{20}\)x SABCD = 28,8 cm2 ; SBMN = \(\frac{1}{20}\)x SABCD = 9,6 cm2
=> SMNPQ = SABCD - ( SAMP + SDPQ + SNCQ + SBMN ) = 192 - (36 + 24 + 28,8 + 9,6) = 93,6 cm2
Vậy....
SQAM = SQDP = \(\dfrac{1}{6}\) SABCD = 48 cm2
SMBN = SPNC = \(\dfrac{1}{12}\) SABCD = 24 cm2
Diện tích hình MNPQ là:
288 - (48 + 24) x 2 = 144 (cm2)
Đáp số: 144 cm2
Kẻ 2 đường chéo của MNPQ lần lượt là MP; NQ
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì BN = NC ; DQ = QA
=> Vì BC =AD=> BN = NC = DQ = QA
=> Kẻ đường chéo thứ 2 từ N sang Q = Chiều dài của hcn ABCD
=> SMNPQ = NQ*MP : 2
Mà NQ = AB và MP = BC
=> SMNPQ = AB* BC : 2
Mà AB*BC= 288
=> SMNPQ = 288 : 2
SMNPQ = 144 (cm2)
Ta có: SAMP = 1212x AM x AP = 1212x (3434x AB) x (1212 x AD) = (1212 x3434 x 1212) x AB x AD = 316316x SABCD = 316316 x 192 = 36 cm2
SDPQ = 1212 x PD x DQ = 1212 x (1212x AD) x (1212x DC) = 1818x AD x DC = 1818x SABCD = 1818x 192 = 24 cm2
Tương tự, SNCQ = 320320x SABCD = 28,8 cm2 ; SBMN = 120120x SABCD = 9,6 cm2
=> SMNPQ = SABCD - ( SAMP + SDPQ + SNCQ + SBMN ) = 192 - (36 + 24 + 28,8 + 9,6) = 93,6 cm2
Vậy....
SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\times\) \(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{8}\)\(\times\)SABCD
SDPQ = \(\dfrac{1}{2}\)DQ\(\times\)DP = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\) AD\(\times\)\(\dfrac{1}{2}\)DP = \(\dfrac{1}{8}\) \(\times\) SABCD
CN = CB - BN = CB - \(\dfrac{1}{3}\)CB = \(\dfrac{2}{3}\)CB
SCPN = \(\dfrac{1}{2}\)CP\(\times\)CN = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\) CD\(\times\)\(\dfrac{2}{3}\)CB = \(\dfrac{1}{6}\)SABCD
SBNM = \(\dfrac{1}{2}\)BN\(\times\)BM = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{3}\)BC = \(\dfrac{1}{12}\)SABCD
Diện tích tứ giác MNPQ bằng: (1 - \(\dfrac{1}{8}\) - \(\dfrac{1}{8}\) - \(\dfrac{1}{6}\) - \(\dfrac{1}{12}\) )SABCD = \(\dfrac{1}{2}\)SABCD
Diện tích của tứ giác MNPQ là: 240\(\times\)\(\dfrac{1}{2}\) = 120 (cm2)
SAMQ = \(\dfrac{2}{3}\)SABQ (vì hai tam giác có chung đường cao hạ từ đỉnh Q xuống đáy AB và AM = \(\dfrac{2}{3}\)AB)
SABQ = \(\dfrac{1}{2}\)SABD ( vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đáy AD và AQ = \(\dfrac{1}{2}\)AD)
SABD = \(\dfrac{1}{2}\)SABCD ( vì ABCD là hình chữ nhật)
⇒ SAMQ = \(\dfrac{2}{3}\) \(\times\) \(\dfrac{1}{2}\) \(\times\dfrac{1}{2}\) = \(\dfrac{1}{6}\) SABCD = 96 \(\times\) \(\dfrac{1}{6}\) = 16 (cm2)
SDPQ = SCPN = \(\dfrac{1}{2}\)SCDN = (vì hai tam giác có chung chiều cao hạ từ đỉnh N xuống đáy CD và CP = \(\dfrac{1}{2}\)CD)
SCDN = \(\dfrac{1}{2}\)SBCD ( Vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy BC và CN = \(\dfrac{1}{2}\) CB)
SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)
⇒ SDPQ = SCPN = \(\dfrac{1}{2}\)\(\times\dfrac{1}{2}\times\dfrac{1}{2}\)SABCD = 96 \(\times\)\(\dfrac{1}{8}\) = 12 (cm2)
BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB
SBMN = \(\dfrac{1}{3}\)SABN (Vì hai tam giác có chung đường cao hạ từ đỉnh N xuống đáy AB và BM = \(\dfrac{1}{3}\) AB)
SABN = \(\dfrac{1}{2}\)SABC (Vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy BC và BN = \(\dfrac{1}{2}\)BC)
SABC = \(\dfrac{1}{2}\) SABCD ( vì ABCD là hình chữ nhật)
⇒SBMN = \(\dfrac{1}{3}\)\(\times\)\(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{2}\)SABCD = 96 \(\times\) \(\dfrac{1}{12}\) = 8 (cm2)
SMNPQ = SABCD - (SAMQ + SDPQ + SCPN + SBMN)
SMNPQ = 96 - (16 + 12 + 12 + 8) = 48 (cm2)
Đáp số: 48 cm2