Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho hình chữ nhật ABCD có diện tích 216 cm2. Trên các cạnh AB, BC, CD và DA lần lượt lấy các điểm M, N, P, Q sao cho AM = MB, BN = 2/3 BC, CP = 2/3 CD và DQ = QA. Tính diện tích hình MNPQ?
AQ = AD - DQ = AD - \(\dfrac{3}{4}\)AD = \(\dfrac{1}{4}\)AD
SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\times\)\(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{4}\)AD = \(\dfrac{1}{16}\)SABCD
SBMN = \(\dfrac{1}{2}\)MB\(\times\)BN = \(\dfrac{1}{2}\)\(\times\) \(\dfrac{1}{2}\)AB\(\times\)\(\dfrac{1}{2}\)BC = \(\dfrac{1}{8}\)SABCD
SCMN = \(\dfrac{1}{2}\)CN\(\times\)CP = \(\dfrac{1}{2}\times\dfrac{1}{2}\)BC \(\times\) \(\dfrac{2}{3}\)CD = \(\dfrac{1}{6}\)SABCD
DP = DC - CP = DC - \(\dfrac{2}{3}\)DC = \(\dfrac{1}{3}\)DC
SDPQ = \(\dfrac{1}{2}\times\)\(\dfrac{1}{3}\times\)DC \(\times\) \(\dfrac{3}{4}\)AD = \(\dfrac{1}{8}\)SABCD
Diện tích của tứ giác MNPQ là:
288 \(\times\)( 1 - \(\dfrac{1}{16}\) - \(\dfrac{1}{8}-\dfrac{1}{6}-\dfrac{1}{8}\)) = 150 (cm2)
ĐS...
Ta có: SAMP = 1212x AM x AP = 1212x (3434x AB) x (1212 x AD) = (1212 x3434 x 1212) x AB x AD = 316316x SABCD = 316316 x 192 = 36 cm2
SDPQ = 1212 x PD x DQ = 1212 x (1212x AD) x (1212x DC) = 1818x AD x DC = 1818x SABCD = 1818x 192 = 24 cm2
Tương tự, SNCQ = 320320x SABCD = 28,8 cm2 ; SBMN = 120120x SABCD = 9,6 cm2
=> SMNPQ = SABCD - ( SAMP + SDPQ + SNCQ + SBMN ) = 192 - (36 + 24 + 28,8 + 9,6) = 93,6 cm2
Vậy....
SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{3}\)AB\(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{12}\)SABCD
BM = AB - AM = AB - \(\dfrac{1}{3}\)AB = \(\dfrac{2}{3}\)AB
SBMN = \(\dfrac{1}{2}\)BM\(\times\)BN = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)AB\(\times\)\(\dfrac{1}{2}\)BC = \(\dfrac{1}{6}\)SABCD
SCPN = \(\dfrac{1}{2}\)CN \(\times\) CP = \(\dfrac{1}{2}\) \(\times\) \(\dfrac{1}{2}\)BC\(\times\)\(\dfrac{1}{3}\)CD = \(\dfrac{1}{12}\)SABCD
DP = CD - CP = CD - \(\dfrac{1}{3}\)CD = \(\dfrac{2}{3}\)CD
SDPQ = \(\dfrac{1}{2}\)DP\(\times\)DQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)CD \(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{6}\)SABCD
SMNPQ = SABCD - (SAMQ + SBMN + SCPN + SDPQ)
Phân số chỉ diện tích của tứ giác MNPQ là:
1 - \(\dfrac{1}{12}\) - \(\dfrac{1}{6}-\dfrac{1}{12}-\dfrac{1}{6}\) = \(\dfrac{1}{2}\) (SACBD)
Diện tích của tứ giác MNPQ là:
360 \(\times\) \(\dfrac{1}{2}\) = 180(cm2)
Đáp số: 180 cm2
SAMQ = \(\dfrac{1}{2}\)AM\(\times\)AQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)AB\(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{6}\)SABCD
BM = AB - AM = AB - \(\dfrac{2}{3}\)AB = \(\dfrac{1}{3}\)AB
SBMN = \(\dfrac{1}{2}\)\(\times\)BM\(\times\)BN = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{1}{3}\)AB\(\times\)\(\dfrac{2}{3}\)BC = \(\dfrac{1}{9}\)SABCD
CN = BC - BN = BC - \(\dfrac{2}{3}\)BC = \(\dfrac{1}{3}\)BC
SCPN = \(\dfrac{1}{2}\times\)\(\dfrac{1}{3}\)BC\(\times\)\(\dfrac{1}{3}\)CD = \(\dfrac{1}{18}\)SABCD
PD = DC - CP = DC - \(\dfrac{1}{3}\)CD = \(\dfrac{2}{3}\)CD
SDPQ = \(\dfrac{1}{2}\)\(\times\)\(\dfrac{2}{3}\)CD \(\times\)\(\dfrac{1}{2}\)AD = \(\dfrac{1}{6}\)SABCD
Phân số chỉ diện tích của tứ giác MBPQ là:
1 - \(\dfrac{1}{6}\) - \(\dfrac{1}{9}\) - \(\dfrac{1}{18}\) - \(\dfrac{1}{6}\) = \(\dfrac{1}{2}\) (SABCD)
Diện tích tứ giác MNPQ là:
216 \(\times\) 12 = 108 (cm2)
Đáp số: 108 cm2
A B C D M N P Q
Hình tớ vẽ hơi xấu, bạn thông cảm nhé.
Ta có \(S\Delta AMQ=\dfrac{1}{2}.AM.AQ=\dfrac{1}{2}.\dfrac{1}{2}AB.\dfrac{1}{3}AD\)
\(=\dfrac{1}{12}.288=24\left(cm^2\right)\)
\(S\Delta MBN=\dfrac{1}{2}MB.BN=\dfrac{1}{2}.\dfrac{1}{2}AB.\dfrac{1}{4}BC\)
\(=\dfrac{1}{16}.288=18\left(cm^2\right)\)
\(S\Delta QDP=\dfrac{1}{2}QD.DP=\dfrac{1}{2}.\dfrac{2}{3}AD.\dfrac{2}{3}DC\)
\(=\dfrac{2}{9}.288=64\left(cm^2\right)\)
\(S\Delta NPC=\dfrac{1}{2}.NC.CP=\dfrac{1}{2}.\dfrac{3}{4}BC.\dfrac{1}{3}.DC\)
\(=\dfrac{1}{8}.288=36\left(cm^2\right)\)
\(S_{MNPQ}=288-36-64-18-24=146\left(cm^2\right)\)
DQ + QA = DA ⇒ QA = DA - DQ = DA - \(\dfrac{2}{3}\)DA = \(\dfrac{1}{3}\)DA
SAMQ = \(\dfrac{1}{3}\)SADM( Vì hai tam giác có chung chiều cao hạ từ đỉnh M xuống đáy AD và AQ = \(\dfrac{1}{3}\)AD)
SADM = \(\dfrac{1}{2}\)SABD(vì hai tam giác có chung chiều cao hạ từ đỉnh D xuống đáy AB và AM = \(\dfrac{1}{2}\)AB)
SABD = \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật)
⇒SAMQ = \(\dfrac{1}{3}\times\dfrac{1}{2}\times\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\) \(\dfrac{1}{12}\)= 24 (cm2)
SDPQ = \(\dfrac{2}{3}\)SADP(vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy AD và DQ = \(\dfrac{2}{3}\)DA)
DP = DC - CP = DC - \(\dfrac{1}{3}\)DC = \(\dfrac{2}{3}\)DC
SADP = \(\dfrac{2}{3}\)SACD(Vì hai tam giác có chung chiều cao hạ từ đỉnh A xuống đáy DC và DP = \(\dfrac{2}{3}\) DC)
SACD = \(\dfrac{1}{2}\)SABCD
⇒SDPQ = \(\dfrac{2}{3}\times\dfrac{2}{3}\times\)\(\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\) \(\dfrac{2}{9}\)= 64 (cm2)
CN = BC - BN = BC - \(\dfrac{1}{4}\)BC = \(\dfrac{3}{4}\)BC
SCNP = \(\dfrac{3}{4}\)SCBP(vì hai tam giác có chung chiều cao hạ từ đỉnh P xuống đáy BC và CN = \(\dfrac{3}{4}\)BC)
SCBP = \(\dfrac{1}{3}\)SBCD(vì hai tam giác có chung chiều cao hạ từ đỉnh B xuống đấy CD và CP = \(\dfrac{1}{3}\) CD)
SBCD = \(\dfrac{1}{2}\)SABCD (vì ABCD là hình chữ nhật)
⇒SCNP = \(\dfrac{3}{4}\times\dfrac{1}{3}\times\dfrac{1}{2}\) SABCD = 288 \(\times\) \(\dfrac{1}{8}\) = 36 (cm2)
SBMN = \(\dfrac{1}{4}\)SBCM (Vì hai tam giác có chung đường cao hạ từ đỉnh M xuống đáy BC và BN = \(\dfrac{1}{4}\)BC)
SBCM = \(\dfrac{1}{2}\)SABC(Vì hai tam giác có chung chiều cao hạ từ đỉnh C xuống đáy AB và BM =\(\dfrac{1}{2}\)AB)
SABC = \(\dfrac{1}{2}\)SABCD(vì ABCD là hình chữ nhật)
⇒ SBMN = \(\dfrac{1}{4}\times\dfrac{1}{2}\times\dfrac{1}{2}\)\(\times\)SABCD = 288 \(\times\)\(\dfrac{1}{16}\) = 18 (cm2)
SMNPQ = SABCD - (SAMQ +SDPQ+SCNP+SBMN)
Diện tích của MNPQ là:
288 - (64 + 24 + 36 + 18) = 146 (cm2)
Đáp số: 146 cm2
SQAM = SQDP = \(\dfrac{1}{6}\) SABCD = 48 cm2
SMBN = SPNC = \(\dfrac{1}{12}\) SABCD = 24 cm2
Diện tích hình MNPQ là:
288 - (48 + 24) x 2 = 144 (cm2)
Đáp số: 144 cm2
Kẻ 2 đường chéo của MNPQ lần lượt là MP; NQ
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì AM =2/3 AB => MB = 1/3AB
=> Vì AB = DC => 1/3 AB = 1/3CD => MB = CP
=> Kẻ đường chéo thứ nhất từ M xuống C = Chiều rộng của hcn ABCD
Vì BN = NC ; DQ = QA
=> Vì BC =AD=> BN = NC = DQ = QA
=> Kẻ đường chéo thứ 2 từ N sang Q = Chiều dài của hcn ABCD
=> SMNPQ = NQ*MP : 2
Mà NQ = AB và MP = BC
=> SMNPQ = AB* BC : 2
Mà AB*BC= 288
=> SMNPQ = 288 : 2
SMNPQ = 144 (cm2)