Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Nửa chu vi hình chữ nhật là 30:2=15(cm)
Gọi chiều rộng ban đầu là x(cm)
(ĐIều kiện: x>0; x<15/2)
Chiều dài ban đầu là 15-x(cm)
Chiều rộng sau khi tăng thêm 2cm là x+2(cm)
Chiều dài sau khi tăng thêm 3cm là 15-x+3=18-x(cm)
Diện tích tăng thêm \(42cm^2\) nên ta có:
\(\left(x+2\right)\left(18-x\right)-x\left(15-x\right)=42\)
=>\(18x-x^2+36-2x-15x+x^2=42\)
=>x+36=42
=>x=6(nhận)
vậy: Chiều rộng ban đầu là 6cm
Chiều dài ban đầu là 15-6=9cm

Theo đề bài ta có:
Diện tích hình chữ nhật ABCD là: AB.AD=2a\(^2\) (1)
Chu vi hình chữ nhật là: 2(AB+CD)=6a⇒AB+CD=3a ( 2 )
Từ (1) và (2), ta có ABAB và CDCD là nghiệm của phương trình:
x\(^2\)− 3ax − 2a\(^2\)=0
Giải phương trình ta được: x\(_1\)= 2a; x\(_2\)=a
Theo giả thiết AB>AD nên ta chọn AB=2a; AD=a
Khi quay hình chữ nhật quanh ABAB ta được hình trụ có h=AB=2a và r=AD=a
Vậy diện tích xung quanh hình trụ là:
Sxq=2π.AD.AB=2π.a.2a=4πa\(^2\)
Thể tích hình trụ là:
V=π.AD2.AB=π.a\(^2\).2a=2πa\(^3\)

Giả sử ABCD là hình thang cân thỏa điều kiện đề bài.
Hạ đường cao AH, BK xuống BC
Ta tính được DH = \(\frac{CD-AB}{2}=18\left(cm\right)\)
\(\Rightarrow HC=CD-DH=32\left(cm\right)\)
\(\Rightarrow AH=\sqrt{DH.HC}=24\left(cm\right)\)
Từ đó tính được diện tích hình thang ABCD là : \(768cm^2\)
vẽ đườg cao AH&BK.táco:
Tamgiác AHD=támgiacBKC(ccạnh huynề-góc nhọn)
-->DH=KC mà:DC=DH+HK+KC ---->DC=2DH+HK----->DH=(DC-HK):2
mà HK=AB(ABKH là hcn)
dođo:DH=(DC-AB):2=(50-14):2=18
--->HC=32
tamgiác AHD có H^=90dộ theo HTL có:AH^2= DHxHC=18x32=576
--->AH=24
Rùi đó bạn tự tính S hình thang nha!
Vì: CHu vi hcn ABCD là 170
hay: (AB+AD).2=170
=>AB+AD=85
Có:\(\begin{cases}AB+AD=85\\AB-AD=35\end{cases}\)\(\Leftrightarrow\begin{cases}AB=85-AD\\85-AD-AD=35\end{cases}\)\(\Leftrightarrow\begin{cases}AB=85-AD\\-2AD=-50\end{cases}\)
\(\Leftrightarrow\begin{cases}AB=85-25=60\\AD=25\end{cases}\)
Theo đề ra ta có
(+) AB - AD =35 (1)
(+) AB+AD+BC+CD=170
=> (AB+AD)+(BC+CD)=170
=> 2(AB+AD)=170
=> AB+AD=85 (2)
Cộng (1) và (2) Ta có
(AB+AD)+(AB - AD )=85+35
=> 2AB=120
=> AB=60
=> AD=25
=> \(S_{ABCD}=60.26=1500\left(cm^2\right)\)