K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
8 tháng 9 2021

\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}=\overrightarrow{AB}+\overrightarrow{AD}\)

\(\Leftrightarrow\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}=\overrightarrow{AC}\)

\(\Leftrightarrow4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}=2\overrightarrow{AO}\)

\(\Leftrightarrow4\overrightarrow{MO}=2\overrightarrow{OA}\)

\(\Leftrightarrow\overrightarrow{MO}=\dfrac{1}{2}\overrightarrow{AO}\)

\(\Rightarrow M\) là trung điểm OA

8 tháng 9 2021

C

12 tháng 5 2017

Do là giao điểm của hai đường chéo hình bình hành nên:
\(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}+\overrightarrow{MD}\)\(=\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{MO}+\overrightarrow{OB}+\overrightarrow{MO}+\overrightarrow{OC}+\overrightarrow{MO}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}+\overrightarrow{OA}+\overrightarrow{OB}+\overrightarrow{OC}+\overrightarrow{OD}\)
\(=4\overrightarrow{MO}\) (ĐPCM).

AH
Akai Haruma
Giáo viên
30 tháng 9 2020

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

17 tháng 8 2020

Lời giải:

Gọi $O$ là tâm lục giác đều. Khi đó $AD, BE, CF$ giao nhau tại trung điểm $O$ của mỗi đường.

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB}-(\overrightarrow{MD}+\overrightarrow{MF})$

$=(\overrightarrow{MA}-\overrightarrow{MB})+(\overrightarrow{MC}-\overrightarrow{MD})+(\overrightarrow{ME}-\overrightarrow{MF})$

$=\overrightarrow{BA}+\overrightarrow{DC}+\overrightarrow{FE}$

$=\overrightarrow{CO}+\overrightarrow{OB}+\overrightarrow{BC}=\overrightarrow{CB}+\overrightarrow{BC}=\overrightarrow{0}$

Do đó:

$\overrightarrow{MA}+\overrightarrow{MC}+\overrightarrow{ME}-\overrightarrow{MB} =\overrightarrow{MD}+\overrightarrow{MF}$

Đáp án C

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) \(\overrightarrow {MA}  + \overrightarrow {MB}  + \overrightarrow {MC}  + \overrightarrow {MD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow \overrightarrow {MO}  + \overrightarrow {OA}  + \overrightarrow {MO}  + \overrightarrow {OB}  + \overrightarrow {MO}  + \overrightarrow {OC}  + \overrightarrow {MO}  + \overrightarrow {OD}  = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) + \left( {\overrightarrow {OC}  + \overrightarrow {OD} } \right) = 4\overrightarrow {MO} \)

\( \Leftrightarrow 4\overrightarrow {MO}  + \overrightarrow 0  + \overrightarrow 0  = 4\overrightarrow {MO} \\ \Leftrightarrow 4\overrightarrow {MO}  = 4\overrightarrow {MO} \) (luôn đúng)

(vì O là giao điểm 2 đường chéo nên là trung điểm của AB, CD)

b) ABCD là hình bình hành nên ta có \(\overrightarrow {AB}  + \overrightarrow {AD}  = \overrightarrow {AC} \)

Suy ra \(\)\(\overrightarrow {AB}  + \overrightarrow {AC}  + \overrightarrow {AD} = \left( {\overrightarrow {AB}  + \overrightarrow {AD} } \right) + \overrightarrow {AC}  = \overrightarrow {AC}  + \overrightarrow {AC}  = 2\overrightarrow {AC} \) (đpcm)

10 tháng 12 2023

\(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{BM}+\overrightarrow{MA}=\overrightarrow{BA}\)(2)

\(\overrightarrow{MD}-\overrightarrow{MC}=\overrightarrow{CM}+\overrightarrow{MD}=\overrightarrow{CD}\)(1)

Vì ABCD là hình vuông nên \(\overrightarrow{BA}=\overrightarrow{CD}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{MD}-\overrightarrow{MC}\)

=>\(\overrightarrow{MA}+\overrightarrow{MC}=\overrightarrow{MB}+\overrightarrow{MD}\)