Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài này mà của lớp 9 thì dễ, lớp 8 thì làm thế này nhé.
Trên AD lấy điểm E sao cho góc ABE=60 độ.
Đặt AB = x (x>0)
Tam giác ABE vuông có góc ABE = 60 độ nên BE = 2 AB = 2x.
Áp dụng định lí Pi-ta-go => AE= \(\sqrt{3}\)x
Tam giác BED cân tại E => BE = ED = 2x.
=> AD = AE + ED =\(\sqrt{3}\)x +2x =x(\(\sqrt{3}\) +2)
Áp dụng định lí Pi-ta-go vào tam giác vuông ABD
BD2 = AB2 + AD2 <=> 172 = x2 +(\(\sqrt{3}\)+2)2 x2 => x=\(\frac{17}{\sqrt{8+4\sqrt{3}}}\)
=> AB, AD => Diện tích của hcn ABCD.
a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có
góc ADB chung
=>ΔHAD đồng dạng với ΔABD
b: ΔHAD đồng dạng vơi ΔABD
=>DH/DA=DA/DB
=>DA^2=DH*DB
Cho hình chữ nhật ABCD có góc ACB =, BD=8cm. Chu vi hình chữ nhật ABCD là cm.