Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔADH vuông tại H và ΔABH vuông tại H có
góc HAD=góc HBA
Do đó: ΔADH đồng dạng với ΔBAH
Suy ra: HA/HB=HD/HA
hay \(HA^2=HD\cdot HB\)
b: \(BD=9+16=25cm\)
\(AD=\sqrt{9\cdot25}=15\left(cm\right)\)
AB=20cm
c: Xét ΔAHB có
K là trung điểm của AH
M là trung điểm của HB
Do đó: KM là đường trung bình
=>KM//AB và KM=AB/2
=>KM//DN và KM=DN
=>DKMN là hình bình hành
a: Xét ΔAHB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình của ΔAHB
Suy ra: MN//DP và MN=DP
hay DMNP là hình bình hành
a: Xét ΔHAB có
M là trung điểm của HA
N là trung điểm của HB
Do đó: MN là đường trung bình
=>MN//AB và MN=AB/2
=>MN//PC và MN=PC
=>NCPM là hình bình hành
b; Xét ΔBMC có
BH là đường cao
MN là đường cao
BH cắt MN tại N
DO đó:N là trực tâm
=>CN vuông góc với BM
=>BM vuông góc với MP
hay góc BMP=90 độ
Đề bài: Cho hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD .Tính số đo góc AMN
Trả lời: B1 vẽ hình chữ nhật ABCD có AH vuông góc với BD tại H Gọi M,N lần lượt là trung điểm của BH và CD
B2: Nhìn hình và tìm các làm -> ra.
gọi K là trung điểm AH.
\(\Delta AHB\)có MK là đường trung bình nên MK // AB ; MK = \(\frac{1}{2}AB\)
Mà \(AD\perp AB\)nên \(MK\perp AD\)
Xét \(\Delta AMD\)có \(MK\perp AD\); \(AH\perp MD\)nên K là trực tâm
\(\Rightarrow DK\perp AM\)
Mà DN = \(\frac{1}{2}CD\)
\(\Rightarrow MK=DN\)
tứ giác MKDN có MK = DN và MK // DN nên là hình bình hành
\(\Rightarrow\)DK // MN
\(\Rightarrow\)\(MN\perp AM\)
\(\Rightarrow\)\(\widehat{AMN}=90^o\)