K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng vơí ΔABD

b: ΔHAD đồng dạng với ΔABD

=>AD/BD=HD/AD

=>AD^2=DH*DB

c: BD=căn 8^2+6^2=10cm

AH=6*8/10=4,8cm

DH=AD^2/BD=6^2/10=3,6cm

d: ΔHAD đồng dạng với ΔABD

=>S HAD/S ABD=(AD/BD)^2=9/25 và k=AD/BD=3/5

5 tháng 5 2023

a) Xét ΔHAD và ΔABD ta có:

\(\widehat{D}\) chung

\(\widehat{DAB}=\widehat{DHA}=90^0\)

⇒ΔHAD ∼ ΔABD (g.g)(1)

b) Xét ΔHBA và ΔABD ta có:

\(\widehat{B}\) chung

\(\widehat{AHB}=\widehat{DAB}=90^0\)

→ΔHBA ∼ ΔABD (g.g)(2)

Từ (1) và (2) →ΔHAD∼ΔHBA

\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)

c) Xét ΔABD vuông tại A ta có:

\(BD^2=AB^2+AD^2\)

         \(=8^2+6^2\)

         \(=100\)

\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)

Vì ΔΔHAD ∼ ΔABD (cmt)

\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

5 tháng 5 2023

Hình vẽ:

H 6cm D C A B 8cm

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có 

\(\widehat{HDA}\) chung

Do đó: ΔHAD\(\sim\)ΔABD

b: Xét ΔABD vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

24 tháng 1 2022

ý  c,d nữa bạn giải  chi tiet  giúp minh

22 tháng 5 2022

Giúp mình với các bạn 😭😭

22 tháng 5 2022

xét tam giác HAD và tam giác ABD có 
g BAD = gAHD (=90o
g ADB : chung 
=> tg AHD = tg BAD (g-g) 
 

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có

góc HDA chung

=>ΔHAD đồng dạng với ΔABD

b: ΔABD vuông tại A có AH là đường cao

nên DA^2=DH*DB

c: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

AH=6*8/10=4,8cm

DH=6^2/10=3,6cm

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)

a: Xét ΔABD vuông tại A và ΔHBA vuông tại H có

góc HBA chung

Do đó: ΔABD\(\sim\)ΔHBA

b: \(BD=\sqrt{8^2+6^2}=10\left(cm\right)\)

\(HB=\dfrac{AB^2}{BD}=6.4\left(cm\right)\)