Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) vì ABCD là hình chữ nhật
nên AB // DC => góc ABH= góc BDC ( 2 góc so le trong )
Xét 2 tam giác AHB và BCD có
góc ABH = góc BDC
góc AHB = góc BCD =900
=> 2 tam giác AHB và BCD đồng dạng (g.g)
b) Xét 2 tam giác ADH và BDA có
góc ADH chung
góc AHD = góc BAD =900
nên 2 tam giác ADH và BDA là 2 tam giác đồng dạng (g.g)
=> \(\frac{AD}{BD}=\frac{DH}{AD}\)
=> AD2=BD.DH
tam giác ABD vuông tại A
=> \(BD^2=AD^2+AB^2\)( Py-ta-go)
=>BD =10cm
mà AD2=DH.BD (cmt)
=> 62=DH.10
=> DH =3.6cm
tam giác ADH vuông tại H nên AD2=AH2+DH2 ( py-ta-go)
<=> 62-3.62=AH2
AH=\(\sqrt{6^2-3.6^2}\)=4.8cm
a: Xét ΔABD vuông tại A có
\(BD^2=AB^2+AD^2\)
nên BD=10(cm)
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Bài 2:
A B C D H 1
a) Xét tam giác BDC vuông tại C có:
\(DC^2+BC^2=DB^2\)
\(\Rightarrow BD=\sqrt{DC^2+BC^2}\)( DC=AB)
\(\Rightarrow BD=10\left(cm\right)\)
b) tam giác BDA nhé
Xét tamg giác ADH và tam giác BDA có:
\(\hept{\begin{cases}\widehat{D1}chung\\\widehat{AHD}=\widehat{BAD}=90^0\end{cases}\Rightarrow\Delta ADH~\Delta BDA\left(g.g\right)}\)
c) Vì tam giác ADH đồng dạng với tam giác BDA (cmt)
\(\Rightarrow\frac{AD}{DH}=\frac{BD}{DA}\)( các cạnh t,.ứng tỉ lệ )
\(\Rightarrow AD^2=BD.DH\)
d) Xét tan giác AHB và tam giác BCD có:
\(\hept{\begin{cases}\widehat{AHB}=\widehat{BCD}=90^0\\\widehat{ABH}=\widehat{DBC}=45^0\end{cases}\Rightarrow\Delta AHB~\Delta BCD\left(g.g\right)}\)
( góc= 45 độ bạn tự cm nhé )
e) \(S_{ABD}=\frac{1}{2}AD.AB=\frac{1}{2}AH.BD\)
\(\Rightarrow AD.AB=AH.BD\)
\(\Rightarrow AH=4,8\left(cm\right)\)
Dùng Py-ta-go làm nốt tính DH
Bài 1
A B C H I D
a) Áp dụng định lý Pytago vào tam giác ABC vuông tại A ta có:
\(AB^2+AC^2=BC^2\)
Thay AB=3cm, AC=4cm
\(\Rightarrow3^2+4^2=BC^2\)
<=> 9+16=BC2
<=> 25=BC2
<=> BC=5cm (BC>0)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{ABH}=\widehat{BDC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
\(\widehat{ADH}\) chung
Do đó: ΔADH\(\sim\)ΔBDA
Suy ra: \(\dfrac{AD}{BD}=\dfrac{HD}{DA}\)
hay \(AD^2=HD\cdot BD\)
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
ˆABH=ˆBDCABH^=BDC^
Do đó: ΔAHB∼∼ΔBCD
b: Xét ΔADH vuông tại H và ΔBDA vuông tại A có
ˆADHADH^ chung
Do đó: ΔADH∼∼ΔBDA
Suy ra: ADBD=HDDAADBD=HDDA
hay AD2=HD⋅BD
a: Xét ΔAHB vuông tại H và ΔBCD vuông tại C có
\(\widehat{BAH}=\widehat{DBC}\)
Do đó: ΔAHB\(\sim\)ΔBCD
b: Xét ΔADB vuông tại A có AH là đường cao
nên \(AD^2=DH\cdot DB\)
c: BD=10(cm)
=>DH=3,6cm
=>BH=6,4(cm)
=>AH=4,8cm
sửa đề là đồng dạng bạn nhé
a, Xét tam giác AHB và tam giác BCD có :
^AHB = ^BCD = 900 ; ^ABH = ^BDC ( soletrong )
Vậy tam giác AHB ~ tam giác BCD ( g.g )
b, Xét tam giác ADH và tam giác DBC có :
^ADH = ^DBC ( soletrong) ; ^AHD = ^BCD = 900
Vậy tam giác ADH ~ tam giác DBC (g.g)
\(\dfrac{DH}{BC}=\dfrac{AD}{DB}\Rightarrow AD.BC=DH.DB=AD^2\)
c, Theo định lí Pytago tam giác ABD vuông tại A
\(BD=\sqrt{AD^2+AB^2}=10cm\)
Ta có : \(DH=\dfrac{AD^2}{DB}=\dfrac{18}{5}cm\)
Lại có : tam giác AHB ~ tam giác BCD ( g.g ) (cmt)
\(\dfrac{AH}{BC}=\dfrac{AB}{BD}\Rightarrow AH=\dfrac{AB.BC}{BD}=\dfrac{24}{5}cm\)