K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAC vuông tại B và ΔCBM vuông tại C có

BA/BC=BC/CM

=>ΔBAC đồng dạng với ΔCBM

=>góc BAC=góc CBM

=>góc CBM+góc ACB=90 độ

=>BM vuông góc AC

b: AM=căn AD^2+DM^2=a*căn 13

AC=căn AB^2+BC^2=a*2*căn 5

MC=a

\(cosMAC=\dfrac{AM^2+AC^2-MC^2}{2\cdot AM\cdot AC}=\dfrac{8}{\sqrt{65}}\)

\(1+tan^2MAC=\dfrac{1}{cos^2MAC}\)

=>\(tan^2MAC+1:\dfrac{64}{65}-1=\dfrac{1}{64}\)

=> tan MAC=1/8

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

20 tháng 7 2019

C A B C D M N H #Hinh_anh_chi_mang_tinh_chat_minh_hoa

Từ NC = 3 NA => NC = 3/4 CA

Kẻ NH _|_CD

=> NH // AD

Theo Ta-let có

\(\frac{NH}{AD}=\frac{CN}{CA}=\frac{\frac{3}{4}CA}{CA}=\frac{3}{4}\)

\(\Rightarrow NH=\frac{3AD}{4}=\frac{3.4}{4}=3\)

Theo Pytago có \(AD^2+DC^2=AC^2\)

               \(\Leftrightarrow4^2+8^2=AC^2\)

              \(\Leftrightarrow AC^2=80\)

                \(\Leftrightarrow AC=4\sqrt{5}\)

                \(\Rightarrow NC=\frac{3}{4}AC=\frac{3}{4}.4\sqrt{5}=3\sqrt{5}\)

Áp dụng định lí Pytago \(NH^2+HC^2=NC^2\)

                                  \(\Leftrightarrow3^2+HC^2=45\)

                                \(\Leftrightarrow HC^2=36\)

                                 \(\Leftrightarrow HC=6\)

CÓ \(MC=\frac{CD}{2}=\frac{8}{2}=4\)

\(\Rightarrow HM=HC-CM=6-4=2\)

Áp dụng Pytago

\(HN^2+HM^2=NM^2\)

\(\Leftrightarrow3^2+2^2=NM^2\)

\(\Leftrightarrow MN^2=13\)

\(\Leftrightarrow MN=\sqrt{13}\)

11 tháng 10 2020

Gọi M, N, P lần lượt là trung điểm của EF, EG, HG

∆AEF vuông tại A có AM là trung tuyến nên AM = 1/2EF

∆HCG vuông tại C có CP là trung tuyến nên CP = 1/2GH

∆EFG có MN là đường trung bình nên MN = 1/2FG

∆EGH có NP là đường trung bình nên NP = 1/2EH

Chu vi tứ giác EFGH bằng EF + FG + GH + HE = 2(AM + MN + NP + PC) ≥ 2AC

Dấu "=" xảy ra khi A, M, N, P, C thẳng hàng theo thứ tự đó

<=> FG // AC // EH, EF // BD // HG <=> Tứ giác EFGH là hình bình hành

Cách xác định điểm: Lấy điểm F trên AB sao cho EF // BD, sau đó lần lượt lấy các điểm H, G trên CD, BC sao cho EH // AC // FG

28 tháng 10 2021

a: Xét ΔABD có 

M là trung điểm của AB

S là trung điểm của AD

Do đó: MS là đường trung bình của ΔABD

Suy ra: MS//BD và \(MS=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

R là trung điểm của CD

Do đó: NR là đường trung bình của ΔBCD

Suy ra: NR//BD và \(NR=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MS//NR và MS=NR

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Suy ra: MN là đường trung bình cuả ΔABC

Suy ra: MN//AC

mà AC\(\perp\)BD

nên MN\(\perp\)BD

hay MN\(\perp\)MS

Xét tứ giác MSRN có 

MS//RN

MS=RN

Do đó: MSRN là hình bình hành

mà MN\(\perp\)MS

nên MSRN là hình chữ nhật

 

28 tháng 10 2021

a: Xét ΔABD có 

M là trung điểm của AB

S là trung điểm của AD

Do đó: MS là đường trung bình của ΔABD

Suy ra: MS//BD và \(MS=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

R là trung điểm của CD

Do đó: NR là đường trung bình của ΔBCD

Suy ra: NR//BD và \(NR=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MS//NR và MS=NR

Xét ΔABC có

M là trung điểm của AB

N là trung điểm của BC

Suy ra: MN là đường trung bình cuả ΔABC

Suy ra: MN//AC

mà AC\(\perp\)BD

nên MN\(\perp\)BD

hay MN\(\perp\)MS

Xét tứ giác MSRN có 

MS//RN

MS=RN

Do đó: MSRN là hình bình hành

mà MN\(\perp\)MS

nên MSRN là hình chữ nhật