Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Hình chữ nhật ADN gì bạn nhỉ?
Hình chữ nhật phải có 4 đỉnh
Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}y-2=0\\2x-y+3=0\end{matrix}\right.\) \(\Rightarrow E\left(-\dfrac{1}{2};2\right)\)
\(S_{CDE}=\dfrac{1}{2}S_{ABCD}=9\Rightarrow S_{ABCD}=18\)
\(\Rightarrow S_{ADE}=\dfrac{1}{2}AD.AE=\dfrac{1}{8}AD.AB=\dfrac{1}{8}S_{ABCD}=\dfrac{9}{4}\Rightarrow AD.AE=\dfrac{9}{2}\)
Gọi \(A\left(a;2\right)\) và \(D\left(d;2d+3\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{EA}=\left(a+\dfrac{1}{2};0\right)\\\overrightarrow{AD}=\left(d-a;2d+1\right)\end{matrix}\right.\)
\(AB\perp AD\Rightarrow\overrightarrow{EA}.\overrightarrow{AD}=0\Rightarrow\left(a+\dfrac{1}{2}\right)\left(d-a\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=-\dfrac{1}{2}\left(loại\right)\\a=d\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AE=\left|d+\dfrac{1}{2}\right|\\AD=\left|2d+1\right|\end{matrix}\right.\)
\(AE.AD=\left|\left(d+\dfrac{1}{2}\right)\left(2d+1\right)\right|=\dfrac{9}{2}\)
\(\Leftrightarrow\left(2d+1\right)^2=9\Rightarrow\left[{}\begin{matrix}d=1\left(loại\right)\\d=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A\left(-2;2\right)\\D\left(-2;-1\right)\end{matrix}\right.\)
\(\overrightarrow{AB}=4\overrightarrow{AE}\Rightarrow\)tọa độ B
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ C
AB đi qua E và vuông góc BC nên nhận (1;-1) là 1 vtpt
Phương trình AB:
\(1\left(x+1\right)-1\left(y-1\right)=0\Leftrightarrow x-y+2=0\)
Tọa độ B là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+4=0\end{matrix}\right.\) \(\Rightarrow B\left(-3;-1\right)\)
Đường thẳng d qua M và song song AB có pt:
\(1\left(x+1\right)-1\left(y+1\right)=0\Leftrightarrow x-y=0\)
Gọi N là giao điểm d và BC \(\Rightarrow N\) là trung điểm BC
Tọa độ N là nghiệm: \(\left\{{}\begin{matrix}x-y=0\\x+y-4=0\end{matrix}\right.\) \(\Rightarrow N\left(2;2\right)\Rightarrow C\left(7;5\right)\)
Đường thẳng AD qua M và song song BC có pt:
\(1\left(x+1\right)+1\left(y+1\right)=0\Leftrightarrow x+y+2=0\)
A là giao điểm AB và AD nên tọa độ là nghiệm: \(\left\{{}\begin{matrix}x-y+2=0\\x+y+2=0\end{matrix}\right.\) \(\Rightarrow A\left(-2;0\right)\)
\(\overrightarrow{AB}=\overrightarrow{DC}\Rightarrow\) tọa độ D
*Xét tam giác ABC có M; N là trung điểm của AB, BC nên MN là đường trung bình của tam giác.
⇒ M N / / A C ; M N = 1 2 A C ( 1 )
* Xét tam giác ADC có P; Q là trung điểm của CD, DA nên PQ là đường trung bình của tam giác.
⇒ P Q / / A C ; P Q = 1 2 A C ( 2 )
* Từ (1) (2) suy ra PQ// MN; PQ = MN.
Khi đó M N → = Q P →
Đáp án D
Gọi pt AB có dạng:
\(a\left(x-1\right)+b\left(y-4\right)=0\Leftrightarrow ax+by-a-4b=0\)
BC vuông góc AB nên pt BC có dạng:
\(b\left(x+5\right)-ay=0\Leftrightarrow bx-ay+5b=0\)
\(BC=d\left(P;AB\right)=\frac{\left|2a+2b-a-4b\right|}{\sqrt{a^2+b^2}}=\frac{\left|a-2b\right|}{\sqrt{a^2+b^2}}\)
\(AB=d\left(Q;BC\right)=\frac{\left|b-8a+5b\right|}{\sqrt{a^2+b^2}}=\frac{\left|8a-6b\right|}{\sqrt{a^2+b^2}}\)
\(BC.AB=5\)
\(\Leftrightarrow\frac{\left|\left(a-2b\right)\left(8a-6b\right)\right|}{a^2+b^2}=5\)
\(\Leftrightarrow\left[{}\begin{matrix}8a^2+12b^2-22ab=5a^2+5b^2\\8a^2+12b^2-22ab=-5a^2-5b^2\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}3a^2+7b^2-22ab=0\\13a^2+17b^2-22ab=0\left(vn\right)\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}a=7b\\3a=b\end{matrix}\right.\) \(\Rightarrow\) chọn \(\left(a;b\right)=\left(7;1\right);\left(1;3\right)\)
Có 2 trường hợp thỏa mãn...