Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Theo bài ra ta có:
SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Đáp án A
SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Xét ΔABC vuông tại B, có
Chọn A.
SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD)
Đáp án là B
Vì SA vuông góc với đáy nên góc φ giữa SC và mặt phẳng (ABCD) bằng góc giữa SC và hình chiếu AC của nó lên đáy. Suy ra φ = S C A ^ (vì S C A ^ là góc nhọn trong tam giác vuông SAC)
Trong hình chữ nhật ABCD, ta có AC=a 3 . Suy ra tam giác SAC vuông cân ở A.
Vậy, số đo của góc giữa SC và mặt phẳng (ABCD) bằng 450
Chọn C.
Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.
Gọi I = AC ∩ BD, J = AC' ∩ SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.
Suy ra
Do đó dễ thấy
Chọn D.
Theo giả thiết góc giữa SC và đáy bằng 60 o suy ra S C A ^ = 60 o
ABCD là hình chữ nhật nên A C = A B 2 + B C 2 = a 3
Tam giác SAC vuông tại A nên S A = A C . tan 60 o = 3 a
Diện tích đáy là S A B C D = A B . A D = 2 a 2
Thể tích khối chóp S.ABCD là V = 1 3 2 a 2 . 3 a = 2 a 3