Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi P là trung điểm của SA. Ta có MNCP là hình bình hành nên MN song song với mặt phẳng (SAC). Mặt khác, BD vuông góc với mặt phẳng (SAC) nên BD vuông góc với MN.
Vì MN song song với mặt phẳng (SAC) nên
\(d\left(MN,AC\right)=d\left(N,SAC\right)\)
\(=\frac{1}{2}d\left(B;\left(SAC\right)\right)=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\)
Vậy \(d\left(MN;AC\right)=\frac{a\sqrt{2}}{4}\)
Chọn B
Gọi I là hình chiếu của M lên (ABCD), suy ra I là trung điểm của AO.
Khi đó
Xét tam giác CNI có
Áp dụng định lý cosin ta có:
Xét tam giác MIN vuông tại I nên
Mà MI//SO
Chọn hệ trục tọa độ như hình vẽ. Ta có:
Khi đó
Vectơ pháp tuyến mặt phẳng (SBD)
Suy ra
Gọi I là trung điểm OA. Vì IM// SO ⇒ IM⊥(ABCD) nên hình chiếu của MN lên (ABCD) là IN. Suy ra
Áp dụng định lí cô sin trong ΔCIN, ta có:
Ta có d(BC, DM) = d(BC, (SAD)) = d(N, (SAD)) = 2d(O, (SAD)) = 2d(O, (SBC)).
Kẻ OE ⊥ SN ⇒ OE ⊥ (SBC).
Ta có d(O, (SBC)) = OE mà
dạ cho em hỏi là tại sao tính NH như vậy được ạ ?? Em cảm ơn!!
Chọn B.
Gọi H = DF ∩ SA => H là trung điểm của ED. I = AC ∩ BD => I là trung điểm BD
Vậy HI là đường trung bình của tam giác BED => HI//EB(1)
Ta có (chóp tứ giác đều, hình chiếu của đỉnh S xuống đáy là I)
Gọi Q à trung điểm AB; dễ thấy NQ là đường trung bình của tam giác ABE => NQ//BE.
Gọi M là trung điểm BC; dễ thấy MQ//AC ,
Ta có
Góc giữa hai đường thẳng MN và BD bằng 90 °