Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Em chỉ cần chú ý là bán \(\dfrac{1}{2}\) số còn lại mà đang còn dư 18 lít thì số còn lại sau khi bán một nửa là 36 lít. Từ đó suy ra cả thùng chưa bán có tất cả 72 lít
Lời giải:
Gọi độ dài cạnh đáy là $x$
Hạ đường cao $SH$ của hình chóp. Do đây là hình chóp tứ giác đều nên $H$ là tâm của hình vuông $ABCD$
Từ $H$ kẻ \(HE\perp AB\)
\(\Rightarrow \angle ((SAB),(ABCD))=\angle (HE,SE)=\angle SEH=30^0\)
\(\Rightarrow \frac{HE}{SE}=\cos SEH=\cos 30=\frac{\sqrt{3}}{2}\)
Mà \(HE\parallel AD\Rightarrow \frac{HE}{AD}=\frac{HB}{BD}=\frac{1}{2}\Leftrightarrow HE=\frac{x}{2}\)
Do đó: \(SE=\frac{x}{\sqrt{3}}\)
Diện tích mặt bên: \(S_{SAB}=\frac{SE.AB}{2}=\frac{\sqrt{3}a^2}{6}\)
\(\Leftrightarrow \frac{x^2}{2\sqrt{3}}=\frac{\sqrt{3}a^2}{6}\Leftrightarrow x^2=a^2\Leftrightarrow x=a\)
\(\frac{SH}{HE}=\tan SEH=\tan 30=\frac{\sqrt{3}}{3}\Rightarrow SH=\frac{\sqrt{3}}{3}.\frac{a}{2}=\frac{\sqrt{3}}{6}a\)
Vậy: \(V=\frac{1}{3}.SH.S_{ABCD}=\frac{1}{3}.\frac{\sqrt{3}a}{6}.a^2=\frac{\sqrt{3}a^3}{18}\)
S o B H A D G d H' C K
Câu a bạn tự tính nhé!
Câu b: Qua G kẻ đường thẳng d // CD , khoảng cách từ \(d\left(G;\left(SAB\right)\right)=d\left(d;\left(SAD\right)\right)\)
Kẻ HH' vuông CD , nối SH'. Lúc này SH' cách d tại K . \(d\left(K;\left(SAB\right)\right)\) là khoảng cách cần tìm.
Ta có: SH'AB =\(\frac{1}{2}S_{ABCD}\)=\(\frac{1}{2}\times2\sqrt{3}a^2=\sqrt{3}a^2\) \(\Rightarrow HH'=\frac{\sqrt{3}a^2}{a}=\sqrt{3}a\)
Vì K nằm trên d nên \(d\left(K;\left(SAB\right)\right)=\frac{2}{3}HH'=\frac{2\sqrt{3}a}{3}\)
47. y=x ĐA: D
48. A(-4;0); B(0;4); C(x; 3)
\(\overrightarrow{AB}=\left(4;4\right);\overrightarrow{BC}=\left(x;-1\right)\)
A;B;C thẳng hàng\(\Rightarrow\dfrac{4}{x}=\dfrac{4}{-1}=>x=-1\) ĐA: D
49.A(2;-2); B(3;1); C(0;2)
\(\overrightarrow{AB}=\left(1;3\right);\overrightarrow{AC}=\left(-2;4\right);\overrightarrow{BC}\left(-3;1\right)\)
=>Tam giác vuông cân=> ĐA:C
51. ĐA:D
52: A(-1;3); B(-3;-2); C(4;1)
\(\overrightarrow{AB}=\left(-2;-5\right);\overrightarrow{AC}=\left(5,-2\right),\overrightarrow{BC}=\left(7;3\right)\)
ĐA: C
Đáp án C