Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Dễ dàng suy ra:
A a ; 0 ; 0 , B 0 ; b ; 0 , C 0 ; 0 ; c , a , b , c > 0
vì d M ; O B C = d M ; O y z = x M = 1 , tương tự ta có được M 1 ; 2 ; 3
M ∈ A B C ⇔ 1 a + 2 b + 3 c ≥ 3 1.2.3 a . b . c 3 ⇔ a b c 6 = V O . A B C ≥ 27
Dấu bằng xảy ra khi:
1 a = 2 b = 3 c = 1 3 ⇒ a = 3 ; b = 6 ; c = 9 ⇒ a + b + c = 18
Đáp án A.
Gọi K(a;b) là tâm đường tròn ngoại tiếp Δ A B C .
Ta có: A K 2 = a - 1 2 + b - 2 2 ; B K 2 = a - 5 2 + b - 4 2 và
C K 2 = a - 3 2 + b + 2 2 .
Từ A K 2 = B K 2 = C K 2 , ta có a - 1 2 + b - 2 2 = a - 5 2 + b - 4 2 a - 1 2 + b - 2 2 = a - 3 2 + b + 2 2
⇔ - 2 a - 4 b + 5 = - 10 a - 8 b + 41 - 2 a - 4 b + 5 = - 6 a + 4 b + 13 ⇔ 2 a + b = 9 a - 2 b = 2 ⇔ a = 4 b = 1 → K 4 ; 1 .
Bán kính đường tròn ngoại tiếp ∆ A B C là R = A K = 4 - 1 2 + 1 - 2 2 = 10 .
Gọi K' là tâm đường tròn ngoại tiếp ∆ A ' B ' C ' , do V 1 ; - 3 = ∆ A B C = ∆ A ' B ' C ' nên V 1 ; - 3 K = K ' → I K → = - 3 I K → . Mà V 1 ; - 3 A = A ' → I A → = - 3 I A → .
Suy ra I A ' → - I K ' → = - 3 I A → - I K → ⇔ K ' A ' → = - 3 K A → . Bán kính đường tròn ngoại tiếp ∆ A ' B ' C ' là R = K ' A ' = 3 K A = 3 R = 3 10 .
Chọn D.
Theo một kết quả cơ bản của hình học vectơ ta có