K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2017

Chọn C.

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Gọi O là trọng tâm của tam giác ABC và M là trung điểm của BC.

- Vì hình chóp S.ABC là hình chóp tam giác đều nên: S) ⊥ (ABC); SO = a√3.

- Kẻ OH ⊥ SM, ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2) nên suy ra d(O; (SBC)) = OH.

- Ta có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

- Xét tam giác vuông SOM, đường cao OH có:

   Đề kiểm tra 45 phút Hình học 11 Chương 3 có đáp án (Đề 2)

12 tháng 1 2017

Đáp án A

Gọi M là trung điểm AB ,dựng OK ⊥ SM

22 tháng 9 2023

Gọi \(I\) là trung điểm của \(BC\), kẻ \(OH \bot SI\left( {H \in SI} \right)\).

\(ABC\) là tam giác đều \( \Rightarrow AI \bot BC\)

\(SO \bot \left( {ABC} \right) \Rightarrow SO \bot BC\)

\( \Rightarrow BC \bot \left( {SAI} \right) \Rightarrow BC \bot OH\)

Mà \(OH \bot SI\)

\( \Rightarrow OH \bot \left( {SBC} \right) \Rightarrow d\left( {O,\left( {SBC} \right)} \right) = OH\)

\(ABC\) là tam giác đều \( \Rightarrow AI = \frac{{AB\sqrt 3 }}{2} = a\sqrt 3  \Rightarrow OI = \frac{1}{3}AI = \frac{{a\sqrt 3 }}{3}\)

\(SO = a\sqrt 2  \Rightarrow OH = \frac{{SO.OI}}{{\sqrt {S{O^2} + O{I^2}} }} = \frac{{a\sqrt {14} }}{7}\)

Chọn A.

3 tháng 7 2016

tính thể tích sao vậy

23 tháng 3 2018

Đáp án C

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

26 tháng 5 2017

Vectơ trong không gian, Quan hệ vuông góc

Vectơ trong không gian, Quan hệ vuông góc

21 tháng 1 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) SG là trục đường tròn ngoại tiếp tam giác đều ABC nên SG ⊥ (ABC). Ta có

Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy khoảng cách từ S tới mặt phẳng (ABC) là độ dài của đoạn SG = a

Ta có CG ⊥ AB tại H. Vì GH là đoạn vuông góc chung của AB và SG, do đó 

Giải sách bài tập Toán 11 | Giải sbt Toán 11 

mà Giải sách bài tập Toán 11 | Giải sbt Toán 11 

nên Giải sách bài tập Toán 11 | Giải sbt Toán 11