K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2017

a) Vì I là trọng tâm của tam giác ABD nên \(AI=\dfrac{1}{3}AC\)

Khối đa diện

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) . Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\)....
Đọc tiếp

Câu 1: Gọi S là diện tích hình phẳng bị giới hạn bởi \(y=ax^3+bx^2+cx+d\) với trục hoành và \(x=a+b,x=c+d\), sao cho S gấp hai lần diện tích tam giác vuông \(HOK\) (O là gốc toạ độ ) với \(H,K\) lần lượt là giao điểm của đường thẳng \(y=\left(a+c\right)x+\frac{b}{d}\) với trục tung và trục hoành. Tìm mối liên hệ của \(a,b,c,d\) .
Câu 2: Cho hình chóp \(S.ABCD\) có mặt đáy là hình vuông cạnh \(2a\). \(SA\perp\left(ABCD\right)\)\(SA=a\). Gọi \(M,N\) lần lượt là trung điểm của cạnh \(SB,SC\). Điểm E nằm trên cạnh \(SA\) sao cho \(SE=2EA\). Gọi điểm \(P\) là điểm di động trên cạnh \(SB\). Giả sử \(d\) là độ dài đoạn \(AP\) mà tại vị trị điểm \(P\) thì \(V_{S.MNEP}\) đạt giá trị nhỏ nhất và giả sử \(d_1\) là độ dài đoạn \(AP\) mà tại vị trí điểm \(P\) thì \(V_{S.MNP}\) đạt giá trị lớn nhất. Tính \(d+d_1\) bằng

a) 3a

b) \(\sqrt{3}a\)

c) 4a

d) Kết quả khác

0
31 tháng 3 2016

S A B C D M N H K

Thế tích của khối chóp S.CDNM :

\(S_{CDNM}=S_{ABCD}-S_{AMN}-SBC\)

             \(=AB^2-\frac{1}{2}AM.AN-\frac{1}{2}BC.BM\)

             \(=a^2-\frac{a^2}{8}-\frac{a^2}{4}=\frac{5a^2}{8}\)

Vậy \(V_{SCDNM}=\frac{1}{3}S_{CDNM.SH}=\frac{5\sqrt{3}a^2}{24}\)

Khoảng cách giữa 2 đường thẳng DM và SC

\(\Delta ADM=\Delta DCN\Rightarrow\widehat{ADM}=\widehat{DCN}\Rightarrow DM\perp CN\) 

Kết hợp với điều kiện :

\(DM\perp SH\Rightarrow DM\perp\left(SHC\right)\)

Hạ \(HK\perp SC\left(K\in SC\right)\Rightarrow HK\)là đoạn vuông góc chung của DM và SC

Do đó :

\(d\left(DM,SC\right)=HK\)

Ta có :

\(\begin{cases}HC=\frac{CD^2}{CN}=\frac{2a}{\sqrt{5}}\\HK=\frac{SH.HC}{\sqrt{SH^2+HC^2}}=\frac{2\sqrt{3}a}{\sqrt{19}}\end{cases}\)

\(\Rightarrow d\left(DM,SC\right)=\frac{2\sqrt{3}a}{\sqrt{19}}\)

19 tháng 4 2016

cậu ơi, hướng dẫn giúp tớ bài tương tự này với: cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, góc giữa SD và mặt phẳng ABCD là 45 độ, SA vuông góc (ABCD). M là trung điểm BC. Tính khoảng cách DM và SC

cảm ơn c nhiều nhiều.

5 tháng 4 2016

S M H G N A O D C

Ta có \(\begin{cases}BC\perp SA\\BC\perp AB\end{cases}\)\(\Rightarrow BC\perp\left(SAB\right)\)\(\Rightarrow BC\perp AM\) (vì \(AM\subset\left(SAB\right)\left(1\right)\)

Mặt khác \(SC\perp\alpha\Rightarrow SA\perp AM\) (vì \(AM\subset\alpha\)) (2)

Từ (1) và (2) suy ra \(AM\perp\left(SBC\right)\Rightarrow AM\perp MG\) (vì \(MG\subset\left(SBC\right)\))

\(\Rightarrow\Delta AMG\) vuông tại M, tương tự ta cũng có tam giác ANG vuông tại N \(\Rightarrow\) tâm H đường tròn đáy của (H) là trung điểm AG, có bán kính \(R=\frac{AG}{2}\)

Xét tam giác vuông SAC tại A có \(AG=\frac{SA.AC}{SC}=\frac{\sqrt{6}}{3}a\Rightarrow R=\frac{\sqrt{6}}{6}a\)

Vì OH là đường cao (H)\(\Rightarrow OH\perp\alpha\Rightarrow OH\)//\(SC\Rightarrow O\) là giao điểm hai đường chéo AC, BD

\(\Rightarrow OH=\frac{1}{2}CG\).

Xét tam giác vuoongSAC có AG là đường cao, nên \(CG=\frac{AC^2}{SC}=\frac{2}{\sqrt{3}}a\Rightarrow OH=\frac{\sqrt{3}}{3}a\)

Vậy thể tích hình nón là \(V_{\left(H\right)}=\frac{1}{3}\pi.R^2.OH=\frac{\sqrt{3}}{54}\pi a^3\)

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12