K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 6 2018

Đáp án B

Thật vậy, giả sử M N / / B C  Ta sẽ chứng minh thiết diện là hình thang.

 

Khi đó, thiết diện là tứ giác  J M J N

 

Do đó, tứ giác  J M J N là hình thang (đpcm)

9 tháng 2 2019

4 tháng 5 2019

Chọn C

Ta gọi E, F lần lượt là trung điểm của SC, AB

 

Ta có ME//NF(do cùng song song với BC. Nên tứ giác MENF là hình thang, và 

hay tứ giác MENF là hình thang vuông tại M, F

Ta có:  hay E là hình chiếu vuông góc của N lên (SAC)

 

Từ đó ta có được, góc giữa MN và (SAC) là góc giữa MN và CI

Suy ra, gọi  α là góc giữa MN và (SAC) thì 

24 tháng 9 2019

30 tháng 11 2019

2 tháng 4 2016

B C D A S E P M N

Gọi P là trung điểm của SA. Ta có MNCP là hình bình hành nên MN song song với mặt phẳng (SAC). Mặt khác, BD vuông góc với mặt phẳng (SAC) nên BD vuông góc với MN.

Vì MN song song với mặt phẳng (SAC) nên 

\(d\left(MN,AC\right)=d\left(N,SAC\right)\)

                  \(=\frac{1}{2}d\left(B;\left(SAC\right)\right)=\frac{1}{4}BD=\frac{a\sqrt{2}}{4}\)

Vậy \(d\left(MN;AC\right)=\frac{a\sqrt{2}}{4}\)

8 tháng 10 2017

Chọn A.

Gắn hệ trục tọa độ như hình vẽ. Khi đó ta có:

A(0;0;0), B(0;a;0), C(a;a;0), D(a;0;0), S(0;0;a)

là trung điểm của BC  ⇒ M a 2 ; a ; 0

N là trung điểm của SD ⇒ N a 2 ; 0 ; a 2 ⇒ M N → 0 ; - a ; a 2

Do ABCD là hình vuông nên  AC ⊥ BD

S A ⊥ ( A B C D ) B D ⊂ ( A B C D ) ⇒ S A ⊥ B D

Ta có: 

là một pháp tuyến của (SAC)

Khi đó ta có: 

sin α = cos ( M N → , B D → ) = M N → . B D → M N → . B D →

= a 2 a 5 2 . a 2 = 10 5

1 sin 2 α   = 1 + c o t 2 α   ⇔ 25 10 = 1 + c o t 2 α   ⇔ c o t 2 α   = 3 2 ⇒ c o t α = 3 2 ( d o   0 < α < 90 0 )

Lại có: 

tan α . c o t α = 1   ⇒ tan α = 2 3 = 6 3

23 tháng 3 2019

Chọn A.

Gắn hệ trục tọa độ như hình vẽ. Khi đó ta có:

A(0;0;0), B(0;a;0), C(a;a;0), D(a;0;0), S(0;0;a)

là trung điểm của BC  ⇒ M a 2 ; a ; 0

là trung điểm của SD  ⇒ N a 2 ; 0 ; a 2 ⇒ M N → 0 ; - a ; a 2

Do ABCD là hình vuông nên  AC ⊥ BD

S A ⊥ ( A B C D ) B D ⊂ ( A B C D ) ⇒ S A ⊥ B D

Ta có: 

là một pháp tuyến của (SAC)

Khi đó ta có: 

sin α = cos ( M N → , B D → ) = M N → . B D → M N → . B D →

= a 2 a 5 2 . a 2 = 10 5

1 sin 2 α   = 1 + c o t 2 α   ⇔ 25 10 = 1 + c o t 2 α   ⇔ c o t 2 α   = 3 2 ⇒ c o t α = 3 2 ( d o   0 < α < 90 0 )

Lại có: 

tan α . c o t α = 1   ⇒ tan α = 2 3 = 6 3

22 tháng 2 2021

bctfhn ynz httrtn 

30 tháng 3 2018

Đáp án C

25 tháng 3 2019