Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn C.
Phương pháp:
Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp.
Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đều.
Cách giải:
Đáp án D
Gọi O là tâm của hình chữ nhật ABCD và I là trung điểm của SC. Khi đó O I ⊥ ( A B C D )
⇒ I A = I B = I C = I D mà ∆ S A C vuông tại A I A = I S = I C . Do đó I là tâm mặt cầu ngoại tiếp khối chóp S.ABCD suy ra I A = a 2 ⇒ S C = 2 a 2 . Mặt khác AC là hình chiếu của SC trên mặt phẳng A B C D ⇒ S C ; A B C D ^ = S C ; A C ^ = S C A ^ = 45 ° .Suy ra ∆ S A C vuông cân ⇒ S A = A C = 2 a ⇒ V S . A B C D = 1 3 . S A . S A B C D = 1 3 . 2 a . a . a 3 = 2 a 3 3 3 .
Chọn D.
Phương pháp: Xác định tâm của mặt cầu ngoại tiếp khối chóp.
Cách giải: Gọi O là tâm của đáy. I là tâm của mặt cầu ngoại tiếp hình chóp. Dễ thấy I là trung điểm SC và S C A ^ = 45 °
Chọn đáp án C
Phương pháp
Xác định tâm mặt cầu ngoại tiếp hình chóp đều là giao của đường trung trực 1 cạnh bên và chiều cao của hình chóp.
Từ đó sử dụng tam giác đồng dạng để tính bán kính mặt cầu ngoại tiếp hình chóp đều.
Cách giải
Gọi O là tâm hình vuông ABCD và E là trung điểm SB.
Vì S.ABCD là hình chóp đều nên SO vuông góc (ABCD).
Trong (SBO) kẻ đường trung trực của SB cắt SO tại I, khi đó IA=IB=IC=ID=IS nên I là tâm mặt cầu ngoại tiếp hình chóp S.ABCD và bán kính mặt cầu là R=IS.
Ta có ABCD là hình vuông cạnh 2