Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(SAB\right)\cap\left(SCD\right)=SE\)
\(\left(SAC\right)\cap\left(SBD\right)=SF\)
Trong mp (ABCD), nối EF kéo dài lần lượt cắt AD và BC tại P và Q
\(\Rightarrow\left(SEF\right)\cap\left(SAD\right)=SP\)
\(\left(SEF\right)\cap\left(SBC\right)=SQ\)
Bài 3:
Bạn coi lại đề, ko có mặt phẳng nào là mặt phẳng S.ABCD cả :)
Bài 4:
Qua S kẻ đường thẳng d song song AD và BC
Ba mặt phẳng (SAD); (SBC); (ABCD) cắt nhau theo hai giao tuyến AD và BC song song nhau nên giao tuyến thứ 3 cũng phải song song AD và BC
\(\Rightarrow\) Đường thẳng d vừa dựng là giao tuyến cần tìm
Bài 5:
Trong mặt phẳng (SAD), qua M kẻ đường thẳng song song SD cắt AD tại N
Trong mặt phẳng (ABCD), qua N kẻ đường thẳng song song AC cắt CD tại P
Trong mặt phẳng (SAC), qua M kẻ đường thẳng song song AC cắt SC tại Q
Trong mặt phẳng (ABCD), nối NP kéo dài cắt BC tại K
Trong mặt phẳng (SBC), nối K và Q kéo dài cắt SB tại H
Ngũ giác MNPQH là thiết diện cần tìm
\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)
\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)
Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?
bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :)
a) () // (ABCD) => // AB => là trung điểm của SB. Chứng minh tương tự với các điểm còn lại
b) Áp dụng định lí Ta-lét trong không gian:
\(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}\).
Do \(A_1A_2=A_2A\) nên : \(\dfrac{A_1A_2}{A_2A}=\dfrac{B_1B_2}{B_2B}=\dfrac{C_1C_2}{CC_2}=\dfrac{D_1D_2}{D_2D}=1\).
Nên \(B_1B_2=B_2B;C_1C_2=CC_2=D_1D_2=D_2D\).
c) Có hai hình chóp cụt:
a/ - Nếu \(AB//CD\Rightarrow\) qua S kẻ đường thẳng \(d//AB\Rightarrow d\) là giao tuyến của (SAB) và (SCD)
- Nếu AB cắt CD, gọi giao điểm của AB và CD là E thì đường thẳng \(SE\) là giao tuyến (SAB) và (SCD)
b/ Kéo dài HK cắt CD tại F \(\Rightarrow BF\) là giao tuyến của (BHK) và (ABCD)
c/ - Nếu AB//CD, kéo dài KH cắt d tại P, nối BP cắt SA tại Q \(\Rightarrow HQ\) là giao tuyến của (BHK) và (SAD)
- Nếu AB cắt CD, kéo dài KH cắt SE tại M, nối BM cắt SA tại N \(\Rightarrow HN\) là giao tuyến của (BHK) và (SAD)