K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Sửa đề: Cho hình chóp S.ABCD

a: Trong mp(ABCD), gọi K là giao điểm của AD và BC

\(K\in AD\subset\left(SAD\right)\)

\(K\in BC\subset\left(SBC\right)\)

Do đó: \(K\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SK\)

b: Xét (SAB) và (SCD) có

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

AB//CD

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD

 

a: Gọi O là giao điểm của AC và BD

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AB và CD

\(K\in AB\subset\left(SAB\right)\)

\(K\in CD\subset\left(SCD\right)\)

Do đó: \(K\in\left(SAB\right)\cap\left(SCD\right)\)

mà \(S\in\left(SAB\right)\cap\left(SCD\right)\)

nên \(\left(SAB\right)\cap\left(SCD\right)=SK\)

b: Xét (SAD) và (SBC) có

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

AD//BC

Do đó: (SAD) giao (SBC)=xy, xy đi qua S và xy//AD//BC

c: Chọn mp(SCD) có chứa CD

\(N\in SC\subset\left(SCD\right)\)

\(P\in SD\subset\left(SCD\right)\)

Do đó: \(NP\subset\left(SCD\right)\)

mà \(NP\subset\left(MNP\right)\)

nên (SCD) giao (MNP)=NP

Gọi E là giao điểm của CD với NP

=>E là giao điểm của CD với (MNP)

Chọn mp(SBD) có chứa MP

\(BD\subset\left(SBD\right)\)

\(BD\subset\left(ABCD\right)\)

Do đó: \(BD\subset\left(SBD\right)\cap\left(ABCD\right)\)

Gọi F là giao điểm của MP với BD

=>F là giao điểm của MP với (ABCD)

NV
19 tháng 12 2020

Gọi E là giao điểm của AC và BD \(\Rightarrow\left\{{}\begin{matrix}E\in\left(SAC\right)\\E\in\left(SBD\right)\end{matrix}\right.\)

\(\Rightarrow SE=\left(SAC\right)\cap\left(SBD\right)\)

Kéo dài AD và BC cắt nhau tại F

\(\Rightarrow SF=\left(SAD\right)\cap\left(SBC\right)\)

b.

Chắc là trung điểm của SC và SD?

M và trung điểm SC, N là trung điểm SD

\(\Rightarrow MN\) là đường trung bình tam giác SCD

\(\Rightarrow MN//CD\) , mà \(CD//AB\Rightarrow MN//AB\Rightarrow MN//\left(SAB\right)\)

19 tháng 12 2020

Cảm ơn bạn

3 tháng 10 2021

undefined

a, Gọi O là giao điểm của AC và BD

⇒ SO = (SAC) \(\cap\) (SBD)

b, (SAB) và (SCD) cùng đi qua điểm S và lần lượt chứa hai đường thẳng AB & CD, mà ta lại có AB // CD

⇒ (SAB) \(\cap\) (SCD) = Sx. trong đó Sx là đường thẳng đi qua S và song song với AB và CD

c, Trong (SAC) gọi K là giao điểm của SO và AM

⇒ AM \(\cap\) (SBD) = K

d, Trong (ABCD) gọi I = DN \(\cap\) BC

⇒ DN \(\cap\) (SBC) = I

NV
30 tháng 12 2021

Gọi E là giao điểm AB và CD

\(\Rightarrow E=\left(SAB\right)\cap\left(SCD\right)\)

\(\Rightarrow SE=\left(SAB\right)\cap\left(SCD\right)\)

b.

Do M là trung điểm SC, N là trung điểm BC

\(\Rightarrow MN\) là đường trung bình tam giác SBC

\(\Rightarrow MN||SB\)

Mà \(SB\in\left(SBD\right)\Rightarrow MN||\left(SBD\right)\)

c.

Trong mp (ABCD), nối AN cắt CD kéo dài tại F

Trong mp (SCD), nối FM kéo dài cắt SD tại G

\(\Rightarrow G=SD\cap\left(AMN\right)\)

NV
30 tháng 12 2021

undefined