Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a:
b: BC//AD(ABCD là hình chữ nhật)
\(AD\subset\left(SAD\right)\)
BC không nằm trong mp(SAD)
Do đó: BC//(SAD)
c: AB//CD(ABCD là hình chữ nhật)
\(CD\subset\left(SCD\right)\)
AB không nằm trong mp(SCD)
Do đó: AB//(SCD)
d: Xét ΔSAC có
O,H lần lượt là trung điểm của CA,CS
=>OH là đường trung bình
=>OH//SA
OH//SA
\(SA\subset\left(SAB\right)\)
OH không nằm trong mp(SAB)
Do đó: OH//(SAB)
\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)
\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)
Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?
a: XétΔCAS có
I,H lần lượt là trung điểm của CA,CS
=>IH là đường trung bình
=>IH//SA
mà \(SA\subset\left(SAB\right)\); IH không thuộc mp(SAB)
nên IH//(SAB)
Xét ΔSCD có
H,K lần lượt là trung điểm của SC,SD
=>HK là đường trung bình của ΔSCD
=>HK//CD
mà CD//AB
nên HK//AB
mà \(AB\subset\left(SAB\right)\) và HK không thuộc mp(SAB)
nên HK//(SAB)
HK//(SAB)
IH//(SAB)
\(HK,IH\subset\left(HIK\right)\)
Do đó: (HIK)//(SAB)
b: HK//CD
\(CD\subset\left(ABCD\right)\)
HK không thuộc mp(ABCD)
Do đó; HK//(ABCD)
bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :)
a:
b: ABCD là hình chữ nhật
=>AB//CD và BC//AD
BC//AD
\(AD\subset\left(SAD\right)\)
BC không nằm trong mp(SAD)
Do đó: BC//(SAD)
c: AB//CD
\(CD\subset\left(SCD\right)\)
AB không nằm trong mp(SCD)
Do đó: AB//(SCD)
d: Xét ΔSAC có
O,H lần lượt là trung điểm của CA,CS
=>OH là đường trung bình của ΔSAC
=>OH//SA
OH//SA
\(SA\subset\left(SAB\right)\)
OH không nằm trong mp(SAB)
Do đó: OH//(SAB)