K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 10 2023

a: loading...

b: BC//AD(ABCD là hình chữ nhật)

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD(ABCD là hình chữ nhật)

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình

=>OH//SA

OH//SA
\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

31 tháng 10 2023

a: 

loading...

b: ABCD là hình chữ nhật

=>AB//CD và BC//AD

BC//AD

\(AD\subset\left(SAD\right)\)

BC không nằm trong mp(SAD)

Do đó: BC//(SAD)

c: AB//CD

\(CD\subset\left(SCD\right)\)

AB không nằm trong mp(SCD)

Do đó: AB//(SCD)

d: Xét ΔSAC có

O,H lần lượt là trung điểm của CA,CS

=>OH là đường trung bình của ΔSAC

=>OH//SA
OH//SA

\(SA\subset\left(SAB\right)\)

OH không nằm trong mp(SAB)

Do đó: OH//(SAB)

 

25 tháng 5 2017

Đường thẳng và mặt phẳng trong không gian, Quan hệ song song

\(\Rightarrow\dfrac{OC}{CA}=\dfrac{CI}{CS}\Rightarrow OI\) // \(SA\)

\(OI\subset\left(BID\right)\Rightarrow SA\) // \(\left(BID\right)\)

23 tháng 1 2018

Nếu thêm phần d là : xác định giao điểm K của BG và (SAC).Tính KB/KG thì làm kiểu gì ạ?

24 tháng 10 2023

loading...  loading...  

a: XétΔCAS có

I,H lần lượt là trung điểm của CA,CS

=>IH là đường trung bình

=>IH//SA

mà \(SA\subset\left(SAB\right)\); IH không thuộc mp(SAB)

nên IH//(SAB)

Xét ΔSCD có

H,K lần lượt là trung điểm của SC,SD

=>HK là đường trung bình của ΔSCD

=>HK//CD

mà CD//AB

nên HK//AB

mà \(AB\subset\left(SAB\right)\) và HK không thuộc mp(SAB)

nên HK//(SAB)

HK//(SAB)

IH//(SAB)

\(HK,IH\subset\left(HIK\right)\)

Do đó: (HIK)//(SAB)

b: HK//CD

\(CD\subset\left(ABCD\right)\)

HK không thuộc mp(ABCD)

Do đó; HK//(ABCD)

 

16 tháng 8 2016

bn ơi K thuộc SD hả ? ... nếu vậy thì MK sẽ không thể song song với mặt phẳng ( SBC) đâu nhé :) 

 

16 tháng 8 2016

thuộc ban nhé. có lẽ mình ghi sai

 

23 tháng 10 2023

a: ABCD là hình chữ nhật tâm O

=>O là trung điểm chung của AC và BD

Xét ΔASC có

O,E lần lượt là trung điểm của AC,AS

=>OE là đường trung bình

=>OE//SC

mà SC\(\subset\left(SCD\right)\) và OE không thuộc (SCD)

nên OE//(SCD)

b: Xét ΔBSD có

\(\dfrac{BO}{BD}=\dfrac{BF}{BS}=\dfrac{1}{2}\)

nên OF//SD

=>OF//(SDC)

c: OE//(SDC)
OF//(SDC)

\(OE,OF\subset\left(OEF\right)\)

Do đó: (OEF)//(SCD)

31 tháng 10 2023

a:
loading...

b: ABCD là hình vuông

=>AB//CD và AD//BC

CD//AB

\(AB\subset\left(SAB\right)\)

CD không nằm trong mp(SAB)

Do đó: CD//(SAB)

c: AD//BC

\(BC\subset\left(SBC\right)\)

AD không nằm trong mp(SBC)

Do đó: AD//(SBC)

d: Xét ΔSAC có

M,I lần lượt là trung điểm của AS,AC

=>MI là đường trung bình

=>MI//SC

MI//SC 

\(SC\subset\left(SCD\right)\)

MI không nằm trong mp(SCD)

Do đó: IM//(SCD)