K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2018

Chọn C

Ta có:  α ∩ ( S C D ) = M N   ⇒ M N / / C D .

Do đó  α  là (ABMN).

Mặt phẳng  α  chia khối chóp thành 2 phần có thể tích bằng nhau là

V S . A B M N = V A B C D M N ⇒ V S . A B M N = 1 2 . V S . A B C D               1  

Ta có:

V S . A B C = V S . A C D = 1 2 V S . A B C D

 

Đặt  S N S D = x với (0<x<1), khi đó theo Ta-let ta có  S N S D = S M S C = x .

Mặt khác 

V S . A B M V S . A B C = S A S A . S B S B . S M S C = x   ⇒ V S . A B M = x 2 V S . A B C D

V S . A M N V S . A C D = S A S A . S M S C . S N S D = x 2   ⇒ V S . A M N = x 2 2 V S . A B C D

⇒ V S . A B M N = V S . A B M + V S . A M N = ( x 2 + x 2 2 ) . V S . A B C D   2

Từ (1), (2) suy ra

x 2 + x 2 2 = 1 2 ⇔ x 2 + x - 1 = 0

x = - 1 - 5 2   v à   x = - 1 + 5 2

Đối chiếu điều kiện của x ta được  S N S D = - 1 + 5 2

6 tháng 5 2017

Chọn C

16 tháng 1 2017

Đáp án D

 

14 tháng 8 2019

Đáp án D

 

5 tháng 4 2018

8 tháng 11 2017

Đáp án D

Chú ý: Em nhớ rằng, công thức tính tỉ số thể tích chỉ áp dụng cho khối chóp tam giác. Còn với khối chóp tứ giác, ngũ giác, lục giác,… em cần chia ra thành các khối chóp tam giác và áp dụng công thức.

Công thức giải nhanh:

Cắt khối chóp bởi mặt phẳng song song với đáy: Xét khối chóp  S . A 1 A 2 . . . . . A n  , mặt phẳng (P) song song với mặt đáy cắt cạnh S A 1 tại m thỏa mãn . Khi đó (P) chia khối chóp thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V' và khối đa diện ban đầu có thể tích V thì  V ' V = k 3

Nên  ⇒ V S . M N P Q V S . A B C D = 1 3 2 = 1 27

19 tháng 1 2018

Chọn C.

Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.

Gọi I = AC ∩ BD, J = AC'  ∩  SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.

Suy ra

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Do đó dễ thấy

Giải sách bài tập Toán 12 | Giải sbt Toán 12

11 tháng 9 2019

NV
30 tháng 6 2021

Chắc là mp (P) đi qua A'

Đặt \(V_{SABCD}=V\)

Theo định lý Talet: \(\dfrac{SA'}{SA}=\dfrac{SB'}{SB}=\dfrac{SC'}{SC}=\dfrac{SD'}{SD}=\dfrac{3}{4}\)

Ta có: \(\dfrac{V_{SA'B'C'D'}}{V_{SABCD}}=\dfrac{2V_{SA'B'C'}}{2V_{SABC}}=\dfrac{V_{SA'B'C'}}{V_{SABC}}=\dfrac{SA'}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=\dfrac{3}{4}.\dfrac{3}{4}.\dfrac{3}{4}=\dfrac{27}{64}\)

Tỉ số thể tích 2 phần (phần trên chia phần dưới) là: \(\dfrac{27}{64}:\left(1-\dfrac{27}{64}\right)=\dfrac{27}{37}\)

18 tháng 12 2019