Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Chú ý: Em nhớ rằng, công thức tính tỉ số thể tích chỉ áp dụng cho khối chóp tam giác. Còn với khối chóp tứ giác, ngũ giác, lục giác,… em cần chia ra thành các khối chóp tam giác và áp dụng công thức.
Công thức giải nhanh:
Cắt khối chóp bởi mặt phẳng song song với đáy: Xét khối chóp S . A 1 A 2 . . . . . A n , mặt phẳng (P) song song với mặt đáy cắt cạnh S A 1 tại m thỏa mãn . Khi đó (P) chia khối chóp thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V' và khối đa diện ban đầu có thể tích V thì V ' V = k 3
Nên ⇒ V S . M N P Q V S . A B C D = 1 3 2 = 1 27
Chọn C.
Dễ thấy BD ⊥ SC, nên BD // (AB'C'D'), suy ra BD // B'D'.
Gọi I = AC ∩ BD, J = AC' ∩ SI, khi đó J là trọng tâm của tam giác SAC và J ∈ B'D'.
Suy ra
Do đó dễ thấy
Chắc là mp (P) đi qua A'
Đặt \(V_{SABCD}=V\)
Theo định lý Talet: \(\dfrac{SA'}{SA}=\dfrac{SB'}{SB}=\dfrac{SC'}{SC}=\dfrac{SD'}{SD}=\dfrac{3}{4}\)
Ta có: \(\dfrac{V_{SA'B'C'D'}}{V_{SABCD}}=\dfrac{2V_{SA'B'C'}}{2V_{SABC}}=\dfrac{V_{SA'B'C'}}{V_{SABC}}=\dfrac{SA'}{SA}.\dfrac{SB'}{SB}.\dfrac{SC'}{SC}=\dfrac{3}{4}.\dfrac{3}{4}.\dfrac{3}{4}=\dfrac{27}{64}\)
Tỉ số thể tích 2 phần (phần trên chia phần dưới) là: \(\dfrac{27}{64}:\left(1-\dfrac{27}{64}\right)=\dfrac{27}{37}\)
Chọn C
Ta có: α ∩ ( S C D ) = M N ⇒ M N / / C D .
Do đó α là (ABMN).
Mặt phẳng α chia khối chóp thành 2 phần có thể tích bằng nhau là
V S . A B M N = V A B C D M N ⇒ V S . A B M N = 1 2 . V S . A B C D 1
Ta có:
V S . A B C = V S . A C D = 1 2 V S . A B C D
Đặt S N S D = x với (0<x<1), khi đó theo Ta-let ta có S N S D = S M S C = x .
Mặt khác
V S . A B M V S . A B C = S A S A . S B S B . S M S C = x ⇒ V S . A B M = x 2 V S . A B C D
V S . A M N V S . A C D = S A S A . S M S C . S N S D = x 2 ⇒ V S . A M N = x 2 2 V S . A B C D
⇒ V S . A B M N = V S . A B M + V S . A M N = ( x 2 + x 2 2 ) . V S . A B C D 2
Từ (1), (2) suy ra
x 2 + x 2 2 = 1 2 ⇔ x 2 + x - 1 = 0
x = - 1 - 5 2 v à x = - 1 + 5 2
Đối chiếu điều kiện của x ta được S N S D = - 1 + 5 2