Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: AD = BC = 3 (cm) (tính chất hình thang cân)
ˆABD=ˆBDC (so le trong)
ˆADB=ˆBDC(gt)
⇒ˆABD=ˆADB
⇒ ∆ ABD cân tại A
⇒ AB = AD = 3 (cm)
∆ BDC vuông tại B
⇒ˆBDC+ˆC=90độ ⇒BDC^+C^=90độ
ˆADC=ˆCADC^=C^ (gt)
Mà ˆBDC=12ˆADC nên ˆBDC=12ˆCBD
C^+12C^=90độ ⇒C^=60độ
Từ B kẻ đường thẳng song song AD cắt CD tại E.
Hình thang ABED có hai cạnh bên song song nên AB = DE và AD = BE
⇒ DE = 3 (cm), BE = 3 (cm)
ˆBEC=ˆADC (đồng vị )
Suy ra: ˆBEC=ˆCBE
⇒ ∆ BEC cân tại B có C^=60 độ
⇒ ∆ BEC đều
⇒ EC = BC = 3 (cm)
CD = CE + ED = 3 + 3 = 6 (cm)
1. Vì tứ giác ABCD là hình thang AB//CD nên góc A+ góc D=180 độ mà góc A- góc D=40 do suy ra goc D= (180-40):2=70 do suy ra goc A= 180-70=110 do
Tương tự ta cũng có: \(\widehat{B}+\widehat{C}=180^0\)ma \(\widehat{B}=4\times\widehat{C}\)\(\Rightarrow4\times\widehat{C}+\widehat{C}=180^0\Rightarrow5\times\widehat{C}=180^0\Rightarrow\widehat{C}=36^0\Rightarrow\widehat{B}=180^0-36^0=144^0\)
Còn bài 2 thì tớ chưa nghĩ ra bạn rang đoi nhá
2. Vì AB//DC ma \(K\in AB\Rightarrow\widehat{AKD}=\widehat{KDC};\widehat{BKC}=\widehat{KCD}\) (1)
Vì DK là tia phân giác của \(\widehat{ADC}\Rightarrow\widehat{ADK}=\widehat{KDC}\)và CK là tia phân giác của \(\widehat{BCD}\Rightarrow\widehat{KCB}=\widehat{KCD}\)(2)
Từ(1) vả (2) ta có: \(\widehat{AKD}=\widehat{ADK};\widehat{BKC}=\widehat{BCK}\)suy ra tam giác AKD cân tại A và tam giác KBC cân tại B
\(\Rightarrow AK=AD;BK=BC\Rightarrow AK+BK=AD+BC\Rightarrow AB=AD+BC\)
TAm giác AOB cuông tại O , theo py ta go
=> AB^2 = OA^2 + OB^2
Tương tự CD^2 = OC^2 + OD^2
BC^2 = OB^2 + OC^2
AD^2 = OA^2 + OD^2
AB^2 + CD^2 = OA^2 + OB^2 + OC^2 + CD^2 = BC^2 + AD^2 ( ĐPCM)