K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 11 2018

Đáp án C

Gọi H là trung điểm của CD, dễ thấy SH là đường cao của hình chóp.

 

Suy ra

Để ý rằng SB 2   =   SH 2   +   BH 2   =   SH 2   +   BC 2   +   CH 2 = 3 a 2 / 4   +   a 2   +   a 2 / 4   =   2 a 2 .

Suy ra BS = BD = a 2 , gọi K là trung điểm của SD ta có:

18 tháng 5 2019

Đáp án B

Gọi H là trung điểm của AD, vì ΔASD cân ở S nên SH AD.

Vì (SAD)(ABCD) nên SH (ABCD). K HI SD.

Vì DC AD, DC SH nên DC (SAD). Do đó DC HI.

Kết hợp với HI SD, suy ra HI (SDC).

Vì AB // (SDC) nên d(B; (SDC)) = d(A; (SDC)) = 2HI

Ta có

 

Ta lại có

2 tháng 4 2016

S B H C I A D

Gọi I là trung điểm của AD.

Ta có : \(IA=ID=IC=a\Rightarrow CD\perp AC\)

Mặt khác, \(CD\perp SA\) suy ra CD vuông góc với SC nên tam giác SCD là tam giác vuông tại C

Trong tam giác vuông SAB ta có :

\(\frac{SH}{SB}=\frac{SA^2}{SB^2}=\frac{SA^2}{SA^2+AB^2}=\frac{2a^2}{2a^2+a^2}=\frac{2}{3}\)

Gọi \(d_{1,};d_2\) lần lượt là khoảng cách từ B và H đến mặt phẳng (SCD) thì

\(\frac{d_2}{d_1}=\frac{SH}{SB}=\frac{2}{3}\Rightarrow d_2=\frac{2}{3}d_1\)

\(d_1=\frac{3V_{B.SCD}}{S_{SCD}}=\frac{SA.S_{BCD}}{S_{SCD}}\)

\(S_{NCD}=\frac{1}{2}AB.BC=\frac{1}{2}a^2\)

\(S_{SCD}=\frac{1}{2}SC.CD=\frac{1}{2}\sqrt{SA^2+AB^2+BC^2}.\sqrt{IC^2+ID^2}=a^2\sqrt{2}\)

Suy ra \(d_1=\frac{a}{2}\)

Vậy khoảng cách từ H đến mặt phẳng (SCD) là \(d_2=\frac{2}{3}d_1=\frac{a}{3}\)

5 tháng 6 2018

Đáp án B

18 tháng 12 2016

a) Dễ dàng chứng minh tam giác ABC và ACD đều

Suy ra AC=a, SA= AC.tan(gócSCA)=a.tan(600)

\(V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.a\sqrt{3}.a^2.\frac{\sqrt{3}}{2}=\frac{a^3}{2}\)

b) Có 2 cách làm để tìm khoảng cách từ H đến mp(SCD), nhưng bạn nên chọn phương pháp tọa độ hóa cho dễ

Chọn A làm gốc tọa độ , các tia AD, AI, AS lần lượt trùng tia Ax, Ay, Az

Có ngay tọa độ các điểm \(S\left(0;0;a\sqrt{3}\right)\) , \(D\left(a;0;0\right)\) , \(I\left(0;\frac{a\sqrt{3}}{2};0\right)\)

\(\Rightarrow C\left(\frac{a}{2};\frac{a\sqrt{3}}{2};0\right)\)

theo số liệu đã cho, dễ xác định được điểm H chia đoạn SI với tỷ lệ 2:1

\(\Rightarrow H\left(0;\frac{a}{\sqrt{3}};\frac{a}{\sqrt{3}}\right)\)

Bây giờ chỉ cần viết pt (SCD) là tính được ngay khoảng cách từ H đến SCD

\(\left(SCD\right):\sqrt{3}x+y+z-\sqrt{3}=0\)

\(d\left(H\text{/}\left(SCD\right)\right)=\frac{a\sqrt{3}}{\sqrt{5}}\)

18 tháng 12 2016

Bạn ơi bạn chỉ mình cách bình thường được ko? Vì mình chưa học tọa độ hóa.

28 tháng 3 2016
Lời giải
thi tuyen sinh, tuyen sinh, thi dai hoc, dai hoc, huong nghiep, luyen thi dai hoc, thi thu, de thi thu, thi thu dai hoc, thong tin tuyen sinh, tuyển sinh, thi thử đại học, đề thi thử, thi tuyển sinh, thi đại học, gia su, gia sư, đại học, hướng nghiệp, luyên thi đại học, thi thử, thông tin tuyển sinh 

1) Gọi H là trung điểm của AB.
ΔSAB đều → SH  AB
mà (SAB)  (ABCD) → SH (ABCD)
Vậy H là chân đường cao của khối chóp.

2) Ta có tam giác SAB đều nên SA =a32
suy ra V=13SABCD.SH=a336

30 tháng 3 2016

Khối đa diện

12 tháng 9 2018

26 tháng 4 2018

Đáp án C.

19 tháng 7 2018

Đáp án C

23 tháng 6 2017

Đáp án C