Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án là A
Gọi H là trung điểm A B .
Ta có S A B ⊥ A B C D S A B ∩ A B C D = A B S H ⊂ S A B ; S H ⊥ A B ⇒ S H ⊥ A B C D .
Khi đó: V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 3 2 . a 2 = a 3 3 6 .
Đáp án A
Trong (SAB) kẻ S H ⊥ A B . Ta có ( S A B ) ⊥ ( A B C D ) ( S A B ) ∩ ( A B C D ) = A B ⇒ S H ⊥ ( A B C D ) S H ⊂ ( S A B ) , S H ⊥ A B .
Vậy V S . A B C D = 1 3 S A B C D . S H = 1 3 . a 2 . a 3 2 = a 3 3 6 .
Đáp án C
Phương pháp: Thể tích khối chóp V = 1 3 S d a y . h
Cách giải: Gọi H là trung điểm của AB ta có: S H ⊥ A B và S H = a 3 2
Chọn đáp án D
Gọi H là trung điểm của AB. Từ giả thiết ta có S H ⊥ A B C D
Suy ra
⇒ S H C vuông cân tại H.
Do ∆ B H C vuông tại H nên
⇒ S H = H C = a 5 2
Thể tích khối chóp V S . A B C D = 1 3 S H . S A B C D = a 3 5 6 đ v t t là
Đáp án B.
Gọi I là trung điểm của A B ⇒ S I ⊥ A B ⇒ S I ⊥ ( A B C D ) .
Tam giác SAB đều cạnh a ⇒ S I = a 3 2 . Diện tích hình vuông ABCD là S A B C D = a 2 .
Vậy thể tích cần tính là V S . A B C D = 1 3 . S I . S A B C D = a 2 3 . a 3 2 = a 3 3 6 .
Đáp án D
Gọi M là trung điểm của AB
=> S M ⊥ A B ⇒ S M ⊥ A B C D S M = a 3 2 ⇒ V = 1 3 . S M . A B . A D = 1 3 . a 3 2 . a . a = a 3 3 6