Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐÁP ÁN B
Đường thẳng đã cho có vectơ pháp tuyến n → = B C → = 3 ; 3 = 3(1; 1) nên phương trình đường thẳng là:
(x – 3) + (y – 2) = 0 ⟺ x + y – 5 = 0
Gọi E là trung điểm AC, do H và K cùng nhìn AC dưới 1 góc vuông nên H, K thuộc đường tròn đường kính AC (1)
\(\Rightarrow EH=EK\) hay E nằm trên trung trực HK
Gọi F là trung điểm HK \(\Rightarrow F\left(2;-1\right)\)
\(\overrightarrow{HK}=\left(14;-8\right)=2\left(7;-4\right)\Rightarrow\) EF nhận (7;-4) là 1 vtpt
Phương trình EF: \(7\left(x-2\right)-4\left(y+1\right)=0\Leftrightarrow7x-4y-18=0\)
Tọa độ E là nghiệm: \(\left\{{}\begin{matrix}x-y+10=0\\7x-4y-18=0\end{matrix}\right.\) \(\Rightarrow E\left(\dfrac{58}{3};\dfrac{88}{3}\right)\)
\(\widehat{ACH}=\widehat{HAK}\) (cùng phụ \(\widehat{ABC}\)) \(\Rightarrow AH=HK\)
Mà \(AE=EK\) theo (1) \(\Rightarrow AK\) là trung trực EH
\(\overrightarrow{HE}=\left(\dfrac{73}{3};\dfrac{103}{3}\right)=\dfrac{1}{3}\left(73,103\right)\) \(\Rightarrow AK\) nhận \(\left(103;-73\right)\) là 1 vtpt
Tới đây bạn hãy kiểm tra lại số liệu, số liệu quá bất hợp lý
Tính tiếp như sau:
Viết pt AK (biết đi qua K và có vtpt như trên)
Tìm tọa độ giao điểm P của EH và AK
Khi đó P là trung điểm AK, tìm tọa độ A dễ dàng bằng công thức trung điểm
ta có BC//AD và SA vuông BC => SAD=90
(SD,BC)=(SD,AD)=SDA
xét tam giác SAD vuông tại A có tan(SDA)=SA/AD=\(\sqrt3\) suy ra SDA=60