Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D.
- Gọi G là trọng tâm tam giác ABC.
- Hình chóp S.ABC là hình chóp đều nên SG ⊥ (ABC).
→ Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 90 °
a: AC vuông góc BD
AC vuông góc SO
=>AC vuông góc (SBD)
b: (SA;(SBD))=(SA;SO)=gócASO
Xét ΔACB có BA=BC và góc ABC=60 độ
nên ΔBAC đều
=>AO=a/2
\(SA=\sqrt{SO^2+OA^2}=\sqrt{a^2+\dfrac{1}{4}a^2}=\dfrac{\sqrt{5}}{2}\cdot a\)
sin ASO=OA/SA=a/2:a*căn 5/2
\(=\dfrac{\sqrt{5}}{5}\)
=>góc ASO=27 độ
Gọi O là tâm của hình vuông ABCD.
● Ta có:
● ΔSAO vuông tại A
Đáp án A.
Gọi H là hình chiếu của C trên SO và góc S O C ^ tù nên H nằm ngoài đoạn SO => CH ⊥ (SBD)
=> Góc tạo bởi SC và (SBD) là C S O ^
Lại có
- Gọi O là giao điểm của AC và BD.
- Kẻ: OI ⊥ AB, OH ⊥ SI.
+) Ta có:
+) Ta lại có:
- Do đó, góc giữa hai mặt phẳng (SAB) và (ABCD) bằng góc
+) Khi đó: CD // AB nên CD // ( SAB).
Suy ra:
- Ta có:
+) Tam giác ABC có BC = BA và nên tam giác ABC đêù
- Trong tam giác OIA có:
Chọn C
Phương pháp
Gọi a’ là hình chiếu vuông góc của a trên mặt phẳng (P).
Góc giữa đường thẳng a và mặt phẳng (P) là góc giữa đường thẳng a và a’.