K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
20 tháng 5 2019

Hình bạn tự vẽ

Ta có \(\left\{{}\begin{matrix}SA\perp AB\\AB\perp AD\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\Rightarrow AB\perp SI\) (1)

Do \(\Delta SAD\) đều \(\Rightarrow SI\perp AD\) (2)

(1), (2) \(\Rightarrow SI\perp\left(ABCD\right)\)

Dễ dàng nhận ra ABKD là hình vuông

\(BD=\sqrt{AB^2+AD^2}=a\sqrt{2}\) ; \(BC=\sqrt{BK^2+CK^2}=a\sqrt{2}\)

\(\Rightarrow BD^2+BC^2=4a^2=CD^2\)

\(\Rightarrow\Delta DBC\) vuông cân tại B \(\Rightarrow CB\perp BD\)

Kéo dài IH và CB cắt nhau tại K

\(IH//BD\) (đường trung bình) \(\Rightarrow BC\perp IH\Rightarrow CK\perp\left(SHI\right)\)

\(\Rightarrow\widehat{CSK}\) là góc giữa SC và (SHI)

\(IC=\sqrt{ID^2+CD^2}=\sqrt{\left(\frac{AD}{2}\right)^2+CD^2}=\frac{a\sqrt{17}}{2}\)

\(SI=\frac{a\sqrt{3}}{2}\) (trung tuyến trong tam giác đều cạnh a)

\(\Rightarrow SC=\sqrt{SI^2+IC^2}=a\sqrt{5}\)

\(BK=BH.sin\widehat{KHB}=\frac{AB}{2}.\frac{IA}{IH}=\frac{AB}{2}.\frac{AB}{2\sqrt{AH^2+IA^2}}=\frac{a\sqrt{2}}{4}\)

\(\Rightarrow CK=BC+BK=a\sqrt{2}+\frac{a\sqrt{2}}{4}=\frac{5a\sqrt{2}}{4}\)

\(\Rightarrow sin\widehat{CSK}=\frac{CK}{SC}=\frac{\sqrt{10}}{4}\Rightarrow\widehat{CSK}\approx52^014'\)

28 tháng 3 2022

Gọi O là tâm của hình bình hành ABCD; G = SO∩AM ⇒ G là trọng tâm ΔSAC ⇒ SG/SO = 2/3 ⇒ G cũng là trọng tâm ΔSBD

G ∈ AM ⊂ (P); G ∈ SO ⊂ (SBC) (1)

B' ∈ (P) và B' ∈ SB ⊂(SBC) (2)

D' ∈ (P) và D' ∈ SD ⊂(SBC) (3)

Từ (1); (2); (3) ⇒ G; B'; D' ∈ giao tuyến của (P) và (SBC)

Trong (SBC) vẽ BM//SO//DN (M, N ∈ B'D') ⇒ OG là đường trung bình của hình thang BDNM 

⇒ BM + DN = 2OG = SG

Ta có :

x = SB/SB' = (SB' + BB')/SB' = 1 + BB'/SB' = 1 + BM/SG

y = SD/SD' = (SD' + DD')/SD' = 1 + DD'/SD' = 1 + DN/SG

⇒ x + y = 2 + (BM + DN)/SG = 2 + 1 = 3

1/x + 1/y = SB'/SB + SD'/SD = a/b

⇒ 3a/b = (x + y)(1/x + 1/y) ≥ 2√(xy).2√(1/xy) = 4

⇒ u = a/b ≥ 4/3 tối giản ⇒ GTNN của u = 4/3 xảy ra khi x = y ⇔ SB'SB' = SD/SD' ⇔ B'D'//BD

1 tháng 8 2019

Ko bít

1 tháng 8 2019

:(((((

NV
1 tháng 6 2020

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp CD\\CD\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow CD\perp\left(SAD\right)\)

\(SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\) (1)

\(BD\perp AC\) (2 đường chéo hình vuông) (2)

(1);(2) \(\Rightarrow BD\perp\left(SAD\right)\)

Lại có \(BD\in\left(SBD\right)\Rightarrow\left(SBD\right)\perp\left(SAC\right)\)

\(SA\perp\left(ABCD\right)\Rightarrow AD\) là hình chiếu vuông góc của SD lên (ABCD)

\(\Rightarrow\widehat{SDA}\) là góc giữa SD và (ABCD)

\(tan\widehat{SDA}=\frac{SA}{AD}=\frac{a\sqrt{3}}{a}=\sqrt{3}\Rightarrow\widehat{SDA}=60^0\)