Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình chữ nhật nên \(BC \bot AB\).
Vì \(SA \bot (ABCD) \Rightarrow SA \bot AB,\,SA \bot CD\)
+ Ta có:
\(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\AB \cap SA = A\\AB,\,SA \subset (SAB)\end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot SB\)
Xét \(\Delta SBC\) có \(BC \bot SB \Rightarrow \)Tam giác SBC vuông tại B.
+ Ta có:
\(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\\AD \cap SA = A\\AD,\,SA \subset (SAD)\end{array} \right. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot SD\)
Xét \(\Delta SCD\) có \(CD \bot SD \Rightarrow \)Tam giác SCD vuông tại D.
tham khảo
\(SA\perp\left(SBCD\right)\) nên \(SA\perp BC\)
Mà \(BC\perp AB\) nên \(BC\perp\left(SAB\right)\)
Tam giác \(SBC\) có \(MN\) là đường trung bình nên \(MN//BC,MN=\dfrac{1}{2}BC=\dfrac{a}{2}\text{}\)
Suy ra:\(MN\perp\left(SAB\right)\) và \(MN\perp AM\)
Tam giác \(SCD\) có \(NP\) là đường trung bình nên \(NP//CD\)
Mà \(MN//BC,BC\perp CD\)
Suy ra \(MN\perp NP\)
Vậy \(d\left(AM,NP\right)=MN=\dfrac{a}{2}\)
\(\begin{array}{l}\left. \begin{array}{l} + )AC \bot BD\,\,\left( {hv\,\,ABCD} \right)\\SA \bot BD\,\,\left( {SA \bot \left( {ABCD} \right)} \right)\\AC \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BD \bot \left( {SAC} \right)\\\left. \begin{array}{l} + )BD \bot SC\left( {BD \bot \left( {SAC} \right)} \right)\\BM \bot SC\\BD \cap BM = \left\{ B \right\}\end{array} \right\} \Rightarrow SC \bot \left( {MBD} \right)\end{array}\)
Gọi \(AC \cap BD = \left\{ O \right\}\)
\(\left. \begin{array}{l}SC \bot \left( {MBD} \right)\\OM \subset \left( {MBD} \right)\end{array} \right\} \Rightarrow SC \bot OM\)
Mà \(AH \bot SC\)
\( \Rightarrow AH//OM,OM \subset \left( {MBD} \right) \Rightarrow AH//\left( {MBD} \right)\)
a) Ta có:
\(\left. \begin{array}{l}\left. \begin{array}{l}SA \bot SB\\SA \bot SC\end{array} \right\} \Rightarrow SA \bot \left( {SBC} \right)\\SA \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow \left( {SAB} \right) \bot \left( {SBC} \right)\)
b) Ta có:
\(\left. \begin{array}{l}\left. \begin{array}{l}SA \bot SB\\SA \bot SC\end{array} \right\} \Rightarrow SA \bot \left( {SBC} \right)\\SA \subset \left( {SCA} \right)\end{array} \right\} \Rightarrow \left( {SCA} \right) \bot \left( {SBC} \right)\)
c) Ta có:
\(\left. \begin{array}{l}\left. \begin{array}{l}SA \bot SB\\SB \bot SC\end{array} \right\} \Rightarrow SB \bot \left( {SCA} \right)\\SB \subset \left( {SAB} \right)\end{array} \right\} \Rightarrow \left( {SAB} \right) \bot \left( {SCA} \right)\)
\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);SB \subset \left( {SAB} \right) \Rightarrow BC \bot SB\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow CD \bot SD\end{array}\)
Xét tam giác SAB có
\(SA \bot AB\left( {SA \bot \left( {ABCD} \right)} \right)\)
\( \Rightarrow \) Tam giác SAB vuông tại A
Xét tam giác SBC có
\(SB \bot BC\)
\( \Rightarrow \) Tam giác SBC vuông tại B
Xét tam giác SCD có
\(SD \bot CD\)
\( \Rightarrow \) Tam giác SCD vuông tại D
Xét tam giác SAD có
\(SA \bot AD\left( {SA \bot \left( {ABCD} \right)} \right)\)
\( \Rightarrow \) Tam giác SAD vuông tại A
a) \(SA \bot \left( {ABC} \right);SA \subset \left( {SAB} \right) \Rightarrow \left( {SAB} \right) \bot \left( {ABC} \right)\)
\(\left. \begin{array}{l}AH \bot BC\\SA \bot BC\left( {SA \bot \left( {ABC} \right)} \right)\\AH \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAH} \right);BC \subset \left( {SBC} \right) \Rightarrow \left( {SAH} \right) \bot \left( {SBC} \right)\)
b) Ta có \(AH \bot BC,BC \bot SH\left( {BC \bot \left( {SAH} \right)} \right)\)
\( \Rightarrow \left[ {S,BC,A} \right] = \left( {SH,AH} \right) = \widehat {SHA}\)
Xét tam giác ABC vuông tại A có
\(\widehat {ABC} = {30^0} \Rightarrow \widehat {ACH} = {60^0}\)
Xét tam giác ACH vuông tại H có
\(\sin \widehat {ACH} = \frac{{AH}}{{AC}} \Rightarrow AH = a.\sin {60^0} = \frac{{a\sqrt 3 }}{2}\)
Xét tam giác SHA vuông tại A có
\(\tan \widehat {SHA} = \frac{{SA}}{{AH}} = \frac{{a\sqrt 3 }}{2}:\frac{{a\sqrt 3 }}{2} = 1 \Rightarrow \widehat {SHA} = {45^0}\)
Vậy \(\left[ {S,BC,A} \right] = {45^0}\)
• Ta có:
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\\AB \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\)
Vậy \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
• Ta có:
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)
Vậy \(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).
Lại có \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
Vậy đường thẳng \(AB\) là hình chiếu vuông góc của đường thẳng \(CD\) trên mặt phẳng \(\left( {SAB} \right)\).
• Ta có:
\(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).
\(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
\(S \in \left( {SAB} \right)\)
Vậy tam giác \(SAB\) là hình chiếu vuông góc của tam giác \(SCD\) trên mặt phẳng \(\left( {SAB} \right)\).
Do ABCD là hình thoi
=> AC vuông góc với BD
+ SA vuông góc (ABCD)
=> SA vuông góc với BD
Xét (SAC) có:
+ AC vuông góc với BD
+ SA vuông góc với BD
=> BD vuông góc với (SAC)
\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);AM \subset \left( {SAB} \right) \Rightarrow BC \bot AM\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);AN \subset \left( {SAD} \right) \Rightarrow CD \bot AN\end{array}\)
\(\begin{array}{l}\left. \begin{array}{l} + )AM \bot SB\\AM \bot BC\\SB \cap BC = \left\{ B \right\}\end{array} \right\} \Rightarrow AM \bot \left( {SBC} \right);SC \subset \left( {SBC} \right) \Rightarrow SC \bot AM\\\left. \begin{array}{l} + )AN \bot SD\\AN \bot CD\\SD \cap CD = \left\{ D \right\}\end{array} \right\} \Rightarrow AN \bot \left( {SCD} \right);SC \subset \left( {SCD} \right) \Rightarrow SC \bot AN\\\left. \begin{array}{l} + )AM \bot SC\\AN \bot SC\\AM \cap AN = \left\{ A \right\}\end{array} \right\} \Rightarrow SC \bot \left( {AMN} \right)\end{array}\)