K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 12 2019

20 tháng 11 2017

Phương pháp:

∆ ABC có AM là trung tuyến, I là điểm bất kì trên đoạn AM, đường thẳng đi qua I cắt AB, AC lần lượt tại E, F.

Khi đó: 

 

Cách giải:

Ta có:

Xét SAC có: 

Dấu "=" xảy ra 

Khi đó 

Vậy  V 1 V  đạt giá trị nhỏ nhất bằng  1 3  khi và chỉ khi a= b =  2 3

Chọn A.

8 tháng 1 2017

5 tháng 1 2017

Chọn D

                                               

16 tháng 1 2018

Đáp án D

Gọi G là trọng tâm tam giác S A C ⇒ M N  đi qua G

Với x = S N S B ; y = S M S D  

 

Vậy V 1 V  đạt giá trị nhỏ nhất bằng  1 3

23 tháng 7 2018

19 tháng 10 2018

Chọn D

Gọi O là giao điểm của hai đường chéo AC và BD thì SO ∩ DD' = H. Khi đó H là trung điểm của SO và C' = AH ∩ SO.

Trong mặt phẳng (SAC) : Ta kẻ d // AC và AC' cắt (d) tại K. Khi đó áp dụng tính đồng dạng của các tam giác ta có:

Suy ra:

Lưu ý: Có thể sử dụng nhanh công thức:

10 tháng 1 2018