K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Trong mp(ABCD), gọi \(O=AC\cap BD\)

a) Ta có:

\(\left\{{}\begin{matrix}S\in\left(SAC\right)\\S\in\left(SBD\right)\end{matrix}\right.\)\(\Rightarrow S\in\left(SAC\right)\cap\left(SBD\right)\)

\(\left\{{}\begin{matrix}O\in BD\subset\left(SBD\right)\\O\in AC\subset\left(SAC\right)\end{matrix}\right.\)\(\Rightarrow O\in\left(SAC\right)\cap\left(SBD\right)\)

\(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

Trong mp(SBD), gọi \(I=SO\cap BM\Rightarrow I=BM\cap\left(SAC\right)\)

Ta có: \(\left\{{}\begin{matrix}SM=DM\\OB=OD\end{matrix}\right.\)\(\Rightarrow\dfrac{IB}{IM}=2\)

b) Ta có:

\(\left\{{}\begin{matrix}I\in SO\subset\left(SAC\right)\\I\in BM\subset\left(MBC\right)\end{matrix}\right.\)\(\Rightarrow I\in\left(SAC\right)\cap\left(MBC\right)\)

\(\left\{{}\begin{matrix}C\in\left(SAC\right)\\C\in\left(MBC\right)\end{matrix}\right.\)\(\Rightarrow C\in\left(SAC\right)\cap\left(MBC\right)\)

\(\Rightarrow IC=\left(SAC\right)\cap\left(MBC\right)\)

Trong mp(SAC), gọi \(J=SA\cap IC\)\(\Rightarrow J=SA\cap\left(MBC\right)\)

Theo định lý Menelaus, ta có:

\(\dfrac{JS}{JA}.\dfrac{CA}{CO}.\dfrac{IO}{SO}=1\)\(\Rightarrow\dfrac{JS}{JA}.2.\dfrac{1}{3}=1\Leftrightarrow\dfrac{JS}{JA}=\dfrac{3}{2}\)

24 tháng 12 2021

24 tháng 12 2021

12 tháng 9 2017

NV
16 tháng 4 2021

Ta có: \(AC=\sqrt{AB^2+BC^2}=a\sqrt{3}\) ; 

\(AM=\dfrac{AD}{2}=\dfrac{a\sqrt{2}}{2}\Rightarrow BM=\sqrt{AB^2+AM^2}=\dfrac{a\sqrt{6}}{2}\)

Áp dụng định lý talet:

\(\dfrac{AI}{IC}=\dfrac{MI}{BI}=\dfrac{AM}{BC}=\dfrac{1}{2}\Rightarrow\left\{{}\begin{matrix}IC=\dfrac{2}{3}AC=\dfrac{2a\sqrt{3}}{3}\\IB=\dfrac{2}{3}BM=\dfrac{a\sqrt{6}}{3}\end{matrix}\right.\)

\(\Rightarrow IB^2+IC^2=2a^2=BC^2\)

\(\Rightarrow\Delta IBC\) vuông tại I \(\Rightarrow BM\perp AC\Rightarrow BM\perp\left(SAC\right)\)

Mà \(BM\in\left(SMB\right)\Rightarrow\left(SAC\right)\perp\left(SMB\right)\)

16 tháng 1 2019

29 tháng 12 2019

28 tháng 10 2023

a: Xét ΔSAC có

H,K lần lượt là trung điểm của SA,SC

=>HK là đường trung bình

=>HK//AC

Xét (GHK) và (ABCD) có

HK//AC
\(G\in\left(GHK\right)\cap\left(ABCD\right)\)

Do đó: (GHK) giao (ABCD)=xy, xy đi qua G và xy//HK//AC

b: Chọn mp(SBD) có chứa SD

Gọi O là giao điểm của AC và BD

ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm chung của AC và BD

Xét ΔABC có

G là trọng tâm

BO là trung tuyến của ΔABC

Do đó: B,O,G thẳng hàng

=>G\(\in\)BD

Trong mp(SAC), gọi I là giao điểm của SO với HK

\(I\in SO\subset\left(SBD\right);I\in HK\subset\left(GHK\right)\)

=>\(I\in\left(SBD\right)\cap\left(GHK\right)\)(1)

\(G\in BD\subset\left(SBD\right);G\in\left(GHK\right)\)

=>\(G\in\left(SBD\right)\cap\left(GHK\right)\left(2\right)\)

Từ (1) và (2) suy ra \(\left(SBD\right)\cap\left(GHK\right)=GI\)

Gọi M là giao điểm của SD với GI

=>M là giao điểm của SD với (SHK)

c: Xét ΔSAC có

O,K lần lượt là trung điểm của CA,CS

=>OK là đường trung bình của ΔSAC

=>OK//SA và OK=SA/2

OK=SA/2

SH=SA/2

Do đó: OK=SH

Xét tứ giác SHOK có

SH//OK

SH=OK

Do đó: SHOK là hình bình hành

=>HK cắt SO tại trung điểm của mỗi đường

mà E là trung điểm của HK

nên Elà trung điểm của SO

=>E trùng với I

=>(SBD) giao (GHK)=GE

=>G,E,M thẳng hàng