K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 1

À, tưởng dài mà thực ra cũng dễ thôi, vì toàn điểm đặc biệt cả.

Gọi O là tâm đáy \(\Rightarrow I\) là giao AN và SO

\(\Rightarrow I\) là trọng tâm SAC \(\Rightarrow\dfrac{SI}{SO}=\dfrac{2}{3}\)

Gọi E là giao điểm CM và BD, trong mp (SCM) nối MN cắt SE tại J

E là trọng tâm ABC \(\Rightarrow\dfrac{BE}{BO}=\dfrac{2}{3}\)

Menelaus tam giác BOI:

\(\dfrac{BE}{EO}.\dfrac{OS}{SI}.\dfrac{IJ}{JB}=1\Rightarrow2.\dfrac{3}{2}.\dfrac{IJ}{JB}=1\Rightarrow JB=3IJ\)

\(\Rightarrow IB-IJ=3IJ\Rightarrow\dfrac{IB}{IJ}=4\)

NV
23 tháng 1

loading...

17 tháng 11 2023

a: Gọi O là giao điểm của AC và BD

Chọn mp(SAC) có chứa AN

\(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi I là giao điểm của SO với AN

=>I là giao điểm của AN với mp(SBD)

Chọn mp(AMN) có chứa MN

\(B\in AM\subset\left(AMN\right)\)

\(B\in BD\subset\left(SBD\right)\)

Do đó: \(B\in\left(AMN\right)\cap\left(SBD\right)\)

mà \(I\in\left(AMN\right)\cap\left(SBD\right)\)

nên (AMN) giao (SBD)=BI

Gọi K là giao điểm của BI với MN

=>K là giao điểm của MN với mp(SBD)

b: K là giao điểm của BI với MN

=>B,I,K thẳng hàng

d: ABCD là hình bình hành

=>AC cắt BD tại trung điểm của mỗi đường

=>O là trung điểm của AC và O là trung điểm của BD

Xét ΔSAC có

O,N lần lượt là trung điểm của CA,CS

=>ON là đường trung bình

=>ON//SA và ON=SA/2

Xét ΔINO và ΔIAS có

\(\widehat{INO}=\widehat{IAS}\)

\(\widehat{NIO}=\widehat{AIS}\)

Do đó: ΔINO đồng dạng với ΔIAS

=>\(\dfrac{IN}{IA}=\dfrac{NO}{AS}=\dfrac{1}{2}\)

17 tháng 6 2018

Chứng minh B, J, I thẳng hàng. Áp dụng định lí Mê-nê-la-uýt vào tam giác IAB ta được IJ/JB = 1/4.

Bài tập trắc nghiệm Hình học 11 | Câu hỏi trắc nghiệm Hình học 11

Đáp án C

10 tháng 12 2019

Trong mặt phẳng (SAC) : AF ∩S O = I là trọng tâm tam giác SBD ⇒ IA/IF=2

Đáp án B

3 tháng 1 2021

a) Do MN\(\subset\) (BMN); AD \(\subset\)(ABCD) nên I là một điểm chung của (BMN) với (ABCD). Dễ thấy B là một điểm chung khác I

Vậy (BMN)\(\cap\) (ABCD) =BI

b) J\(\in\)BI\(\subset\) (BMN)

\(\in\) (CD) \(\subset\) (SCD) 

nên J là một điểm chung của (BMN) \(\cap\) (SCD)

vậy (SCD) \(\cap\) (BMN) =NJ

Thiết diện của (BMN) với hình chóp là tứ giác AMNJ

c) Áp dụng định lí Menelaus Trong \(\Delta SAD\) có cát tuyến MNI có:

\(\dfrac{ID}{IA}.\dfrac{MA}{MS}.\dfrac{NS}{ND}=1\)

\(\dfrac{ID}{IA}.1.2=1\) => \(\dfrac{ID}{IA}=\dfrac{1}{2}\)

=> D là trung điểm AI

+ Xét tam giác SAI có 2 trung tuyến MI, SD giao nhau tại N => N là trong tâm tam giác SAI

=> \(\dfrac{NI}{MI}=\dfrac{2}{3}\)

Ta có AD//BC

=> \(\dfrac{IK}{BK}=\dfrac{AI}{BC}=\dfrac{2AD}{BC}=2\)(do AD=BC)

=> \(\dfrac{IK}{IB}=\dfrac{2}{3}\)

Xét tam giác MIB có: \(\dfrac{NI}{MI}=\dfrac{IK}{IB}=\dfrac{2}{3}\)

=> BM//NK

NV
10 tháng 12 2021

a. Qua M kẻ đường thẳng song song SB cắt AB tại E

Qua M kẻ đường thẳng song song SD cắt AD tại H

\(\Rightarrow\Delta MEH\) là thiết diện của mp qua M và song song (SBD)

Qua N kẻ đường thẳng song song SB cắt BC tại F

Qua N kẻ đường thẳng song song SD cắt CD tại G

\(\Rightarrow NFG\) là thiết diện của mp qua N và song song (SBD)

b. Gọi O là giao điểm AC và BD

Do M là trung điểm SA, \(ME||SB\Rightarrow ME\) là đường trung bình tam giác SAB

\(\Rightarrow\) E là trung điểm AB

Hoàn toàn tương tự, ta có F là trung điểm BC, G là trung điểm CD, H là trung điểm AD

\(\Rightarrow EH\) là đường trung bình tam giác ABD, FG là đtb tam giác BCD

\(\Rightarrow I\) là trung điểm AO, J là trung điểm CO

\(\Rightarrow\left\{{}\begin{matrix}OI=\dfrac{1}{2}OA\\OJ=\dfrac{1}{2}OC\end{matrix}\right.\) \(\Rightarrow OI+OJ=\dfrac{1}{2}\left(OA+OC\right)\Rightarrow IJ=\dfrac{1}{2}AC\)

NV
10 tháng 12 2021

undefined

Chọn mp(SAC) có chứa AM

(SAC) giao (SBD)=SO

=>I=AM giao SO

28 tháng 10 2023

a: \(O\in AC\subset\left(SAC\right);O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

b: Chọn mp(SAD) có chứa SA

Xét (SAD) và (CKB) có

\(K\in\left(SAD\right)\cap\left(CKB\right)\)

AD//CB

Do đó: (SAD) giao (CKB)=xy, xy đi qua K và xy//AD//CB

Gọi J là giao điểm của SA với xy

=>J là giao điểm của SA với mp(CKB)

c: \(C\in OA\subset\left(OIA\right);C\in\left(SCD\right)\)

=>\(C\in\left(OIA\right)\cap\left(SCD\right)\)

Xét ΔBSD có 

O,I lần lượt là trung điểm của BD,BS

=>OI là đường trung bình của ΔBSD

=>OI//SD

Xét (OIA) và (SCD) có

\(C\in\left(OIA\right)\cap\left(SCD\right)\)

OI//SD

Do đó: (OIA) giao (SCD)=mn, mn đi qua C và mn//OI//SD

7 tháng 9 2021

thucuocjo ???/

7 tháng 9 2021

thuộc đó bạn