Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).
Do \(\left(SC;\left(ABCD\right)\right)=45^0;SA\perp\left(ABCD\right)\)
nên \(\left\{{}\begin{matrix}\left(SC;AC\right)=45^0\\AS\perp AC\end{matrix}\right.\)\(\Rightarrow AS=AC=\sqrt{AB^2+BC^2}=\sqrt{a^2+a^2}=a\sqrt{2}\)
\(\Rightarrow V_{S.ABCD}=\dfrac{1}{6}.\left(AD+BC\right).AB.AS\)
\(=\dfrac{1}{6}\left(2a+a\right).a.a\sqrt{2}=\dfrac{\sqrt{2}}{2}a^3\)
Lời giải:
$SA\perp (ABCD)$ nên $45^0=\angle (SB, (ABCD))=\angle (SB, AB)=\widehat{SBA}$
$\Rightarrow SA=AB=5$ (cm)
Thể tích khối chóp $S.ABCD$:
$V_{S.ABCD}=\frac{1}{3}.SA.S_{ABCD}=\frac{1}{3}.5.5^2=\frac{125}{3}$ (cm3)
Chọn D
Gọi H là trung điểm của AB.
Do đó:
Xét tam giác vuông BHC:
Xét tam giác vuông SHC:
Suy ra:
Chọn A
=> SB là hình chiếu của SC lên mặt phẳng (SAB).
.
Xét tam giác SBC vuông tại B có
Xét tam giác SAB vuông tại A có:
Đáp án B
Hướng dẫn giải:
+)
+)
+) Ta có A B ⊥ B C , kẻ A P ⊥ S B ( P ∈ S B )
d(A;(SBC)) = AP ⇒ d(AD;SB) = AP
+)
Kẻ SH vuông góc với AB. Do (SAB) vuông góc với đáy nên hình chiều của S trên (ABCD) chính là H.
Mặt khác tam giác SAB cân tại S nên H là trung điểm của AB.
\(CH=\sqrt{BH^2+BC^2}=\sqrt{\dfrac{a^2}{4}+a^2}=\dfrac{a\sqrt{5}}{2}\)
Góc giữa SC và đáy là góc SCH nên \(\widehat{SCH}=45^0\)
\(SH=CH.\tan 45^0=\dfrac{a\sqrt{5}}{2}\)
\(S_{ABCD}=a^2\)
Vậy \(V_{SABCD}=\dfrac{1}{3}.SH.S_{ABCD}=\dfrac{a^3\sqrt{5}}{6}\)
bh tính kiểu gì vậy bạn
mà bạn xác định góc giữa sc và mặt đáy phải là góc SCA chứ
giải thích hộ mình với