K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 3 2016

S A B C D M N H K

Thế tích của khối chóp S.CDNM :

\(S_{CDNM}=S_{ABCD}-S_{AMN}-SBC\)

             \(=AB^2-\frac{1}{2}AM.AN-\frac{1}{2}BC.BM\)

             \(=a^2-\frac{a^2}{8}-\frac{a^2}{4}=\frac{5a^2}{8}\)

Vậy \(V_{SCDNM}=\frac{1}{3}S_{CDNM.SH}=\frac{5\sqrt{3}a^2}{24}\)

Khoảng cách giữa 2 đường thẳng DM và SC

\(\Delta ADM=\Delta DCN\Rightarrow\widehat{ADM}=\widehat{DCN}\Rightarrow DM\perp CN\) 

Kết hợp với điều kiện :

\(DM\perp SH\Rightarrow DM\perp\left(SHC\right)\)

Hạ \(HK\perp SC\left(K\in SC\right)\Rightarrow HK\)là đoạn vuông góc chung của DM và SC

Do đó :

\(d\left(DM,SC\right)=HK\)

Ta có :

\(\begin{cases}HC=\frac{CD^2}{CN}=\frac{2a}{\sqrt{5}}\\HK=\frac{SH.HC}{\sqrt{SH^2+HC^2}}=\frac{2\sqrt{3}a}{\sqrt{19}}\end{cases}\)

\(\Rightarrow d\left(DM,SC\right)=\frac{2\sqrt{3}a}{\sqrt{19}}\)

19 tháng 4 2016

cậu ơi, hướng dẫn giúp tớ bài tương tự này với: cho hình chóp S.ABCD có ABCD là hình vuông cạnh a, góc giữa SD và mặt phẳng ABCD là 45 độ, SA vuông góc (ABCD). M là trung điểm BC. Tính khoảng cách DM và SC

cảm ơn c nhiều nhiều.

2 tháng 4 2017

22 tháng 3 2017

Đáp án B

Ta có S C D N M = S A B C D - S A M N - S B N C  

⇒ V S . C D N M = 1 3 . S C D N M . S H = 5 a 2 12

23 tháng 2 2019

Đáp án B

30 tháng 1 2019

Xét các hình vuông ABCD. Ta có hai tam giác vuông ADM và DCN bằng nhau nên ∠ DMA =  ∠ CND. Từ đó suy ra DM ⊥ CN. Trong tam giác vuông CDN ta có:

CD 2  = CH.CN ⇒ CH = 2a/ 5

Suy ra SH = CH.tan60 °  = Giải sách bài tập Toán 12 | Giải sbt Toán 12

S CDNM = S ABCD - S AMN - S BCM = 5 a 2 / 8

V S . CDNM  = Giải sách bài tập Toán 12 | Giải sbt Toán 12

23 tháng 5 2017

Ôn tập cuối năm môn hình học 12

11 tháng 7 2018

Gọi I là chân đường vuông góc kẻ từ H lên SC

Vì MD ⊥ (SCN), MD ∩ (SCN) = H nên

d(MD, SC) = d(H, SC) = HI = HC.sin60 °  = Giải sách bài tập Toán 12 | Giải sbt Toán 12

7 tháng 10 2017

Chọn C

nên góc giữa mặt phẳng (SBC) và (ABCD) là . Do đó SA = AB tan450 = a

Mặt khác:

 

Vậy:

2 tháng 4 2016

S D C I A K B

\(\begin{cases}\left(SIB\right)\perp\left(ABCD\right)\\\left(SIC\right)\perp\left(ABCD\right)\end{cases}\) \(\Rightarrow SI\perp\left(ABCD\right)\)

Kẻ \(IK\perp BC\left(K\in BC\right)\Rightarrow BC\perp\left(SIK\right)\)\(\Rightarrow\widehat{SKI}=60^0\)

Diện tích hình thang ABCD : \(S_{ABCD}=3a^2\)

Tổng diện tích các tam giá ABI và CDI bằng \(\frac{3a^2}{2}\) Suy ra \(S_{\Delta IBC}=\frac{3a^2}{2}\)

\(BC=\sqrt{\left(AB-CD\right)^2+AD^2}=a\sqrt{5}\)

\(\Rightarrow IK=\frac{2S_{\Delta IBC}}{BC}=\frac{3\sqrt{5}a}{5}\)

\(\Rightarrow SI=IK.\tan\widehat{SKI}=\frac{3\sqrt{15}a}{5}\)

Thể tích của khối chóp S.ABCD : \(V=\frac{1}{3}S_{ABCD}.SI=\frac{3\sqrt{15}a^2}{5}\)

 

27 tháng 8 2018

Đáp án phải là \(\dfrac{3a^3\sqrt{15}}{5}\)