Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

S A B C D O H
Do \(\left\{{}\begin{matrix}SA=SC\\SB=SD\end{matrix}\right.\) \(\Rightarrow\) hình chiếu vuông góc của S lên đáy trùng tâm đáy
\(\widehat{BAD}=60^0\Rightarrow\Delta BAD\) đều \(\Rightarrow BD=a\Rightarrow OB=\frac{a}{2}\)
\(\Rightarrow SO=\sqrt{SB^2-OB^2}=\frac{a\sqrt{11}}{2}\)
b/ Kẻ \(OH\perp AB\Rightarrow AB\perp\left(SOH\right)\Rightarrow\widehat{SHO}\) là góc giữa (SAB) và (ABCD)
\(OH=\frac{1}{2}.\frac{a\sqrt{3}}{2}=\frac{a\sqrt{3}}{4}\Rightarrow tan\varphi=\frac{SO}{OH}=\frac{2\sqrt{33}}{3}\)

a: SO vuông góc (ABCD)
=>(SAC) vuông góc (ABCD)
SO vuông góc (ABCD)
=>(SBD) vuông góc (ABCD)
b: BD vuông góc AC
BD vuông góc SA
=>BD vuông góc (SAC)
d: (SB;(ABCD))=(BS;BO)=góc SBO
cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2
=>góc SBO=60 độ

s B A D C O M
Hình chiếu vuông góc của SA lên (ABCD) là AO nên góc giữa SA và (ABCD) là \(\widehat{SAO}\)
Xét \(\Delta SAO\left(\perp O\right)\) ta có : \(SA=\frac{a\sqrt{5}}{2};AO=\frac{1}{2}AC=\frac{1}{2}a\sqrt{2}\)
\(\cos\widehat{SAO}=\frac{AO}{SA}=\frac{\frac{a\sqrt{2}}{2}}{\frac{a\sqrt{5}}{2}}=\frac{\sqrt{10}}{5}\)
c. Xét \(\Delta SOC\) có : \(\begin{cases}SO\perp BD\\OC\perp BD\end{cases}\) nên \(\left(SOC\right)\perp BD\) mà \(OM\subset\left(SOC\right)\Rightarrow OM\perp BD\)
xét : \(\left(MBD\right)\cap\left(ABCD\right)=BD\)
Trong (MBD) có \(OM\perp BD\)
Trong (ABCD) có \(OC\perp BD\)
Vậy góc giữa (MBD) và (ABCD) là \(\widehat{MOC}\)
Ta có : \(\Delta SAC\) đồng dạng với \(\Delta MOC\) (vì \(CM=\frac{1}{2}CS;CO=\frac{1}{2}CA\))nên \(\widehat{MOC}=\widehat{SAC}\)
Đáp án B
+) Tam giác SAC cân tại S có SO là trung tuyến
⇒ SO cũng là đường cao ⇒ SO ⊥ AC.
+) Tam giác SBD cân tại S có SO là trung tuyến
⇒ SO cũng là đường cao ⇒ SO ⊥ BD.
- Từ đó suy ra SO ⊥ (ABCD).
→ Do ABCD là hình thoi nên CD không vuông góc với BD. Do đó CD không vuông góc với (SBD).