K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 6 2017

Ta có tam giác ACD vuông cân tại C và CA = CD = 2a

⇒ S A A C D = 4 a 2 . Gọi H là trung điểm của AB

Vì tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy

⇒ S H ⊥ A B C D ;   S H = a 3 .   V a y   S S A C D = 4 a 3 3 3

Đáp án cần chọn là A

24 tháng 8 2019

Đáp án D

24 tháng 6 2018

5 tháng 10 2017

Đáp án C

Phương pháp: Thể tích khối chóp  V = 1 3 S d a y . h

Cách giải: Gọi H là trung điểm của AB ta có:  S H ⊥ A B và  S H = a 3 2

25 tháng 11 2018

Đáp án B.

Gọi I là trung điểm của   A B ⇒ S I ⊥ A B ⇒ S I ⊥ ( A B C D ) .

Tam giác SAB đều cạnh  a ⇒ S I = a 3 2 .    Diện tích hình vuông ABCD là   S A B C D = a 2 .

Vậy thể tích cần tính là   V S . A B C D = 1 3 . S I . S A B C D = a 2 3 . a 3 2 = a 3 3 6 .

16 tháng 12 2017

Gọi E là trung điểm của AD ta chỉ ra mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình

chóp S.EABC .

Từ đó ta đưa về bài toán tìm bán kính của mặt cầu ngoại tiếp hình chóp có cạnh bên vuông góc với đáy.

Sử dụng công thức tính nhanh

với R là bán kính mặt cầu ngoại tiếp hình chóp, r là bán kính

đường tròn ngoại tiếp đáy hình chóp, h là chiều cao hình chóp

Sử dụng công thức tính diện tích mặt cầu

Mà SE vuông góc với AD (do tam giác SAD đều có SE là trung tuyến)

Suy ra SE vuông góc với ( ABCD)=>SE vuông góc với (EABC)

Nhận thấy EABC là hình vuông nên đường tròn ngoại tiếp EABC cũng

là đường tròn ngoại tiếp tam giác ABC

Hay mặt cầu ngoại tiếp hình chóp S.ABC cũng là mặt cầu ngoại tiếp hình chóp S.EABC.

Mà hình chóp S.EABC có cạnh bên SE vuông góc với (EABC) và đáy EABC là hình vuông cạnh a. Gọi I là tâm hình vuông EABC

Suy ra bán kính mặt cầu ngoại tiếp chóp S.EABC là 

22 tháng 5 2017

19 tháng 6 2017

Chọn đáp án D.

30 tháng 12 2017

Chọn B.

Phương pháp:

- Xác định đường cao của hình chóp.

- Tính diện tích đáy và chiều cao suy ra thể tích theo công thức   V = 1 3 S h

1 tháng 7 2017

Đáp án A

                                     

          Gọi H  là trung điểm  A B .

          Ta có  S A B ⊥ A B C D S A B ∩ A B C D = A B S H ⊂ S A B ; S H ⊥ A B ⇒ S H ⊥ A B C D .

          Khi đó:  V S . A B C D = 1 3 S H . S A B C D = 1 3 . a 3 2 . a 2 = a 3 3 6 .