K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 11 2018

27 tháng 10 2019

Gọi M là trung điểm CD, P là hình chiếu của H lên SM khi đó H M ⊥ C D ; C D ⊥ S H  mà H P ⊥ S M ⇒ H P ⊥ S C D . Lại có A B / / C D  suy ra A B / / S C D ⇒ d A ; S C D = d H ; S C D = H P

Ta có 1 H P 2 = 1 H M 2 + 1 H S 2  suy ra H P = a 6 3  

Vậy d A ; S C D = a 6 3

Đáp án A

1 tháng 10 2019

Đáp án B.

Ta có A D / / B C , A D ∉ ( S B C ) , B C ⊂ ( S B C ) ⇒ A D / / ( S B C )  

⇒ d ( A D ; S C ) = d ( A D ; ( S B C ) ) = d ( D ; ( S B C ) ) .

Qua I kẻ đường thẳng song song với AD, cắt CD tại H.

Suy ra  I H ⊥ C D  

Từ C D ⊥ I H , C D ⊥ S I ⇒ C D ⊥ ( S I H ) ⇒ C D ⊥ S H .

Suy ra   ( S C D ) , ( A B C D ) ⏜ = S H , I H ⏜ = S H I ⏜ ⇒ C D ⊥ S H

S I = H I . tan S H I ⏜ = a . tan 60 ° = a 3 ⇒ V S . B C D = 1 2 S A B C D = a 3 3 6 .

Lại có V S . B C D = 1 3 . S ∆ S B C . d ( D ; ( S B C ) ) ⇒ d ( D ; ( S B C ) = 3 V S . B C D S ∆ S B C  (1)

Từ I B = 2 3 A B = 2 3 a ⇒ S B = S I 2 + I B 2 = a 3 2 + 2 a 3 2 = a 31 3 .

Từ B C ⊥ A B , B C ⊥ S I ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ ( S A B ) ⇒ B C ⊥ S B ⇒ ∆ S B C  vuông tại B.

Suy ra S ∆ S B C = 1 2 S B . S C = 1 2 . a 31 3 . a = a 2 31 6  (2)

Từ (1) và (2), suy ra   d ( D ; ( S B C ) ) = 3 a 3 3 6 a 2 31 6 = 3 a 3 31 = 3 39 31 a

Vậy d ( A D ; S C ) = d ( D ; ( S B C ) ) = 3 93 31 a  

14 tháng 10 2018

Đáp án B

d K , S C D = 1 2 d H , S C D = 1 2 H F .

A H = 1 3 A B = 1 3 a ; B H = 2 3 A B = 2 3 a

C H = B H 2 + B C 2 = 13 3 a .

C ó   g ó c   g i ữ a   S C   v à   đ á y   l à   60 °     n ê n   t a   c ó  

S C H ^ = 60 0 ⇒ S H = tan 60 0 . C H = 39 3 a

ta có  1 H F 2 = 1 H E 2 + 1 A H 2 ⇒ H F = 13 4 a

 

26 tháng 10 2018

Đáp án C

Gọi M là trung điểm của CD. Kẻ HK vuông góc với SM.

Ta có: C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ ( S H M ) ⇒ ⊥ H K

Mặt khác ta có H K ⊥ S M

Suy ra H K ⊥ ( S C D )

Vậy d ( A , ( S C D ) ) = D ( H , ( S C D ) ) = H K

Xét tam giác BHC vuông tại B, ta có:

H C = B H 2 + B C 2 = a 2 ⇒ S H = H C = a 2

Xét tam giác SHM vuông tại H, ta có: 

1 H K 2 = 1 S H 2 + 1 M H 2 = 1 2 a 2 + 1 a 2 = 3 2 a 2 ⇒ H K = a 6 3

20 tháng 12 2019

Đáp án C

Gọi M là trung điểm của CD. Kẻ HK vuông góc với SM.

Ta có: C D ⊥ H M C D ⊥ S H ⇒ C D ⊥ ( S H M ) ⇒ ⊥ H K

Mặt khác ta có H K ⊥ ( S C D )

Suy ra H K ⊥ ( S C D )

Vậy d ( A , ( S C D ) ) = D ( H , ( S C D ) ) = H K

Xét tam giác BHC vuông tại B, ta có:

H C = B H 2 + B C 2 = a 2 ⇒ S H = H C = a 2

Xét tam giác SHM vuông tại H, ta có:

  1 H K 2 = 1 S H 2 + 1 M H 2 = 1 2 a 2 + 1 a 2 = 3 2 a 2 ⇒ H K = a 6 3

15 tháng 9 2017

Chọn đáp án C

23 tháng 2 2018

13 tháng 1 2018