Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì ABCD là hình chữ nhật nên \(BC \bot AB\).
Vì \(SA \bot (ABCD) \Rightarrow SA \bot AB,\,SA \bot CD\)
+ Ta có:
\(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\AB \cap SA = A\\AB,\,SA \subset (SAB)\end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot SB\)
Xét \(\Delta SBC\) có \(BC \bot SB \Rightarrow \)Tam giác SBC vuông tại B.
+ Ta có:
\(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\\AD \cap SA = A\\AD,\,SA \subset (SAD)\end{array} \right. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot SD\)
Xét \(\Delta SCD\) có \(CD \bot SD \Rightarrow \)Tam giác SCD vuông tại D.
● SA ⊥ (ABCD) ⇒ SA ⊥ AB, SA ⊥ AD.
⇒ Các tam giác SAB, SAD vuông tại A.
● BC ⊥ SA, BC ⊥ AB.
⇒ BC ⊥ SB ⇒ ΔSBC vuông tại B.
● CD ⊥ SA, CD ⊥ AD.
⇒ CD ⊥ SD ⇒ ΔSCD vuông tại D.
1: SA vuông góc (ABCD)
=>SA vuông góc AB
=>ΔSAB vuông tại A
SA vuông góc (ABCD)
=>SA vuông góc AD
=>ΔSAD vuông tại A
4: (SD;(ABCD))=(DS;DA)=góc SDA
tan SDA=SA/AD=1/2
=>góc SDA=27 độ
(SC;(ABCD))=(CS;CA)=góc SCA
AC=căn a^2+a^2=a*căn 2
tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ
• Ta có:
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\\AB \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\)
Vậy \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
• Ta có:
\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)
Vậy \(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).
Lại có \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
Vậy đường thẳng \(AB\) là hình chiếu vuông góc của đường thẳng \(CD\) trên mặt phẳng \(\left( {SAB} \right)\).
• Ta có:
\(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).
\(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).
\(S \in \left( {SAB} \right)\)
Vậy tam giác \(SAB\) là hình chiếu vuông góc của tam giác \(SCD\) trên mặt phẳng \(\left( {SAB} \right)\).
\(\left. \begin{array}{l}\left( {SAC} \right) \cap \left( {SBD} \right) = SO\\\left( {SAC} \right):AC \bot SO = \left\{ O \right\}\\\left( {SBD} \right):BD \bot SO = \left\{ O \right\}\end{array} \right\} \Rightarrow \left( {\left( {SAC} \right),\left( {SBD} \right)} \right) = \left( {AC,BD} \right) = \widehat {AOB}\)
+) Nếu \(\left( {SAC} \right) \bot \left( {SBD} \right) \Rightarrow \widehat {AOB} = {90^0} \Rightarrow AC \bot BD\)
Mà ABCD là hình chữ nhật nên ABCD là hình vuông.
+) Nếu ABCD là hình vuông \( \Rightarrow AC \bot BD \Rightarrow \widehat {AOB} = {90^0}\)
\( \Rightarrow \left( {\left( {SAC} \right),\left( {SBD} \right)} \right) = {90^0} \Rightarrow \left( {SAC} \right) \bot \left( {SBD} \right)\)
Bạn kiểm tra lại đề,
1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)
2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)
Nguyễn Việt Lâm
e xin loi a
ABCD là hình thang vuông tại A và D
còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau
anh giup em vs ah
\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);SB \subset \left( {SAB} \right) \Rightarrow BC \bot SB\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow CD \bot SD\end{array}\)
Xét tam giác SAB có
\(SA \bot AB\left( {SA \bot \left( {ABCD} \right)} \right)\)
\( \Rightarrow \) Tam giác SAB vuông tại A
Xét tam giác SBC có
\(SB \bot BC\)
\( \Rightarrow \) Tam giác SBC vuông tại B
Xét tam giác SCD có
\(SD \bot CD\)
\( \Rightarrow \) Tam giác SCD vuông tại D
Xét tam giác SAD có
\(SA \bot AD\left( {SA \bot \left( {ABCD} \right)} \right)\)
\( \Rightarrow \) Tam giác SAD vuông tại A