K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

\(\begin{array}{l}\left. \begin{array}{l} + )BC \bot AB\left( {hcn\,\,ABCD} \right)\\BC \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AB \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right);SB \subset \left( {SAB} \right) \Rightarrow BC \bot SB\\\left. \begin{array}{l} + )CD \bot AD\left( {hcn\,\,ABCD} \right)\\CD \bot SA\left( {SA \bot \left( {ABCD} \right)} \right)\\AD \cap SA = \left\{ A \right\}\end{array} \right\} \Rightarrow CD \bot \left( {SAD} \right);SD \subset \left( {SAD} \right) \Rightarrow CD \bot SD\end{array}\)

Xét tam giác SAB có

\(SA \bot AB\left( {SA \bot \left( {ABCD} \right)} \right)\)

\( \Rightarrow \) Tam giác SAB vuông tại A

Xét tam giác SBC có

\(SB \bot BC\)

\( \Rightarrow \) Tam giác SBC vuông tại B

Xét tam giác SCD có

\(SD \bot CD\)

\( \Rightarrow \) Tam giác SCD vuông tại D

Xét tam giác SAD có

\(SA \bot AD\left( {SA \bot \left( {ABCD} \right)} \right)\)

\( \Rightarrow \) Tam giác SAD vuông tại A

HQ
Hà Quang Minh
Giáo viên
22 tháng 9 2023

Vì ABCD là hình chữ nhật nên \(BC \bot AB\).

Vì \(SA \bot (ABCD) \Rightarrow SA \bot AB,\,SA \bot CD\)

+ Ta có:

\(\left\{ \begin{array}{l}BC \bot AB\\BC \bot SA\\AB \cap SA = A\\AB,\,SA \subset (SAB)\end{array} \right. \Rightarrow BC \bot (SAB) \Rightarrow BC \bot SB\)

Xét \(\Delta SBC\) có \(BC \bot SB \Rightarrow \)Tam giác SBC vuông tại B.

+ Ta có:

\(\left\{ \begin{array}{l}CD \bot AD\\CD \bot SA\\AD \cap SA = A\\AD,\,SA \subset (SAD)\end{array} \right. \Rightarrow CD \bot (SAD) \Rightarrow CD \bot SD\)

Xét \(\Delta SCD\) có \(CD \bot SD \Rightarrow \)Tam giác SCD vuông tại D.

7 tháng 6 2019

Đề thi Học kì 2 Toán 11 có đáp án (Đề 2)

● SA ⊥ (ABCD) ⇒ SA ⊥ AB, SA ⊥ AD.

⇒ Các tam giác SAB, SAD vuông tại A.

● BC ⊥ SA, BC ⊥ AB.

⇒ BC ⊥ SB ⇒ ΔSBC vuông tại B.

● CD ⊥ SA, CD ⊥ AD.

⇒ CD ⊥ SD ⇒ ΔSCD vuông tại D.

18 tháng 2 2021

undefinedundefined

23 tháng 2 2017

1: SA vuông góc (ABCD)

=>SA vuông góc AB

=>ΔSAB vuông tại A

SA vuông góc (ABCD)

=>SA vuông góc AD

=>ΔSAD vuông tại A

4: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=1/2

=>góc SDA=27 độ

(SC;(ABCD))=(CS;CA)=góc SCA

AC=căn a^2+a^2=a*căn 2

tan SCA=SA/AC=1/căn 2
=>góc SCA=35 độ

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

• Ta có:

\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot BC\\AB \bot BC\end{array} \right\} \Rightarrow BC \bot \left( {SAB} \right)\)

Vậy \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).

• Ta có:

\(\left. \begin{array}{l}SA \bot \left( {ABCD} \right) \Rightarrow SA \bot A{\rm{D}}\\AB \bot A{\rm{D}}\end{array} \right\} \Rightarrow A{\rm{D}} \bot \left( {SAB} \right)\)

Vậy \(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).

Lại có \(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).

Vậy đường thẳng \(AB\) là hình chiếu vuông góc của đường thẳng \(CD\) trên mặt phẳng \(\left( {SAB} \right)\).

• Ta có:

\(A\) là hình chiếu vuông góc của điểm \(D\) trên mặt phẳng \(\left( {SAB} \right)\).

\(B\) là hình chiếu vuông góc của điểm \(C\) trên mặt phẳng \(\left( {SAB} \right)\).

\(S \in \left( {SAB} \right)\)

Vậy tam giác \(SAB\) là hình chiếu vuông góc của tam giác \(SCD\) trên mặt phẳng \(\left( {SAB} \right)\).

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

loading...

\(\left. \begin{array}{l}\left( {SAC} \right) \cap \left( {SBD} \right) = SO\\\left( {SAC} \right):AC \bot SO = \left\{ O \right\}\\\left( {SBD} \right):BD \bot SO = \left\{ O \right\}\end{array} \right\} \Rightarrow \left( {\left( {SAC} \right),\left( {SBD} \right)} \right) = \left( {AC,BD} \right) = \widehat {AOB}\)

+) Nếu \(\left( {SAC} \right) \bot \left( {SBD} \right) \Rightarrow \widehat {AOB} = {90^0} \Rightarrow AC \bot BD\)

Mà ABCD là hình chữ nhật nên ABCD là hình vuông.

+) Nếu ABCD là hình vuông \( \Rightarrow AC \bot BD \Rightarrow \widehat {AOB} = {90^0}\)

\( \Rightarrow \left( {\left( {SAC} \right),\left( {SBD} \right)} \right) = {90^0} \Rightarrow \left( {SAC} \right) \bot \left( {SBD} \right)\)

NV
29 tháng 4 2021

Bạn kiểm tra lại đề,

1. ABCD là hình thang vuông tại A và B hay A và D? Theo dữ liệu này thì ko thể vuông tại B được (cạnh huyền DC nhỏ hơn cạnh góc vuông AB là cực kì vô lý)

2. SC và AC cắt nhau tại C nên giữa chúng không có khoảng cách. (khoảng cách bằng 0)

29 tháng 4 2021

Nguyễn Việt Lâm

e xin loi a

ABCD là hình thang vuông tại A và D

còn đoạn sau khoảng cách giữa 2 đt SC và AC thì e kh biet no sai o đau

anh giup em vs ah