Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Gọi H là trung điểm của cạnh AB. Khi đó SH ⊥ (ABCD)
Ta có SH ⊥ AB; AB ⊥ HN; HN ⊥ SH và SH = 3
Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia Oy và S thuộc tia Oz. Khi đó: B(1;0;0), A(-1;0;0), N(0;2 3 ;0), C(1;2 3 ;0)
D(-1;2 3 ;0), S(0;0; 3 ), M( - 1 2 ; 0 ; 3 2 ), P(1; 3 ;0)
Mặt phẳng (SCD) nhận
làm một vectơ pháp tuyến; mặt phẳng (MNP) nhận
làm một vectơ pháp tuyến.
Gọi φ là góc tạo bởi hai mặt phẳng (MNP) và (SCD) thì
Phân tích phương án nhiễu.
Phương án A: Sai do HS tính đúng
nhưng lại tính sai Do đó tính được
Phương án B: Sai do HS tính đúng nhưng lại tính sai
Do đó tính được
Phương án C: Sai do HS tính đúng nhưng lại tính sai
Do đó tính được
a: CD vuông góc AD
CD vuông góc SA
=>CD vuông góc (SAD)
=>(SAD) vuông góc (SCD)
b: (SCD) giao (ABCD)=CD
CD vuông góc (SAD)
=>CD vuông góc SD
CD vuông góc SD
AD vuông góc CD
mà SD thuộc (SCD) và AD thuộc (ABCD)
nên ((SCD);(ABCD))=(SD;AD)=góc SDA
tan SDA=SA/AD=căn 3/2
=>góc SDA=41 độ
+ Kẻ SH ⊥ AC, H ∈ AC
Do (SAC) ⊥ (ABCD) ⇒ SH ⊥ (ABCD)
+ BD = 2a ⇒ AC = 2a
SA = A C 2 − S C 2 = 2 a 2 − a 3 2 = a ; SH = S A . S C A C = a . a 3 2 a = a 3 2
Ta có: AH = S A 2 − S H 2 = a 2 − a 3 2 2 = a 2 ⇒ AC = 4AH
Lại có: HC ∩ (SAD) = A d C ; S A D d H ; S A D = A C A H = 4
⇒ d(C; (SAD)) = 4d(H; (SAD))
Do BC // (SAD) (BC//AD) ⇒ d(B; (SAD)) = d(C; (SAD))
Do đó d(B; (SAD)) = 4d(H; (SAD))
+ Kẻ HK ⊥ AD tại K, kẻ HJ ⊥ SK tại J
Ta chứng minh được HJ ⊥ (SAD) ⇒ d(H; (SAD)) = HJ
⇒ d(B; (SAD)) = 4HJ
+ Tính HJ
Tam giác AHK vuông tại K có H A K ^ = C A D ^ = 45 ° ⇒ HK = AH.sin 45 ° = a 2 4
Mặt khác: 1 H J 2 = 1 H K 2 + 1 S H 2 ⇒ HJ = a 21 14
Vậy d(B; (SAD)) = 4 . a 21 14 = 2 a 21 7 .
Đáp án C