K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2019

Đáp án B.

(SI là đường cao của tam giác đều SAD)

Ta có:

1 tháng 1 2018

14 tháng 8 2019

 

Đáp án B.

Gọi H là trung điểm của cạnh AB. Khi đó SH ⊥ (ABCD)

Ta có SH ⊥ AB; AB ⊥ HN; HN ⊥ SH và SH =  3

Chọn hệ trục tọa độ Oxyz sao cho H trùng với O, B thuộc tia Ox, N thuộc tia Oy và S thuộc tia Oz. Khi đó:  B(1;0;0), A(-1;0;0), N(0;2 3 ;0), C(1;2 3 ;0)

D(-1;2 3 ;0), S(0;0; 3 ), M( - 1 2 ; 0 ; 3 2 ), P(1; 3 ;0)

Mặt phẳng (SCD) nhận 

làm một vectơ pháp tuyến; mặt phẳng (MNP) nhận 

làm một vectơ pháp tuyến.

Gọi  φ là góc tạo bởi hai mặt phẳng (MNP) (SCD) thì

Phân tích phương án nhiễu.

Phương án A: Sai do HS tính đúng 

nhưng lại tính sai Do đó tính được

Phương án B: Sai do HS tính đúng  nhưng lại tính sai 

Do đó tính được 

Phương án C: Sai do HS tính đúng  nhưng lại tính sai 

Do đó tính được 

 

 

22 tháng 3 2018

23 tháng 4 2017

24 tháng 1 2017

Đáp án B

26 tháng 11 2018

+ Kẻ SH ⊥ AC, H ∈  AC

Do (SAC) (ABCD) ⇒ SH (ABCD)

+ BD = 2a ⇒ AC = 2a

SA = A C 2 − S C 2 = 2 a 2 − a 3 2 = a ; SH =  S A . S C A C = a . a 3 2 a = a 3 2

Ta có: AH = S A 2 − S H 2 = a 2 − a 3 2 2 = a 2 ⇒ AC = 4AH

Lại có: HC ∩ (SAD) = A d C ; S A D d H ; S A D = A C A H =  4

⇒ d(C; (SAD)) = 4d(H; (SAD))

Do BC // (SAD) (BC//AD)  ⇒  d(B; (SAD)) = d(C; (SAD))

Do đó d(B; (SAD)) = 4d(H; (SAD))

+ Kẻ HK ⊥ AD tại K, kẻ HJ ⊥  SK tại J

Ta chứng minh được HJ ⊥  (SAD) d(H; (SAD)) = HJ

⇒  d(B; (SAD)) = 4HJ

+ Tính HJ

Tam giác AHK vuông tại K có H A K ^ = C A D ^ = 45 ° ⇒  HK = AH.sin 45 ° =  a 2 4

Mặt khác: 1 H J 2 = 1 H K 2 + 1 S H 2 ⇒ HJ =  a 21 14

Vậy d(B; (SAD)) = 4 . a 21 14 = 2 a 21 7 .

Đáp án C

25 tháng 2 2018

ĐÁP ÁN: C

2 tháng 4 2019