Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án A.
Phương pháp
Góc giữa đường thẳng và mặt phẳng là góc giữa đường thẳng và hình chiếu của nó trên mặt phẳng đáy.
Cách giải
S C ; A B C D = S C ; A C = S C A
ABCD là hình vuông cạnh a ⇒ A C = a 2
Xét tam giác vuông SAC có:
tan = S A A C = 2 a a 2 = 2
![](https://rs.olm.vn/images/avt/0.png?1311)
Đáp án A.
Gọi N, Q lần lượt là trung điểm của AB, CD ⇒ M N ⊥ A B M Q ⊥ A B .
Qua N kẻ đường thẳng song song với BC, cắt SC tại P.
Suy ra thiết diện của mặt phẳng α và hình chóp là MNPQ.
Vì MQ là đường trung bình của hình tháng ABCD ⇒ M Q = 3 a 2 .
MN là đường trung bình của tam giác SAB ⇒ M N = S A 2 = a .
NP là đường trung bình của tam giác SBC ⇒ N P = B C 2 = a 2 .
Vậy diện tích hình thang MNPQ là S M N P Q = M N . N P + M Q 2 = a 2 a 2 + 3 a 2 = a 2 .
![](https://rs.olm.vn/images/avt/0.png?1311)
Xác định được
Vì M là trung điểm SA nên
Kẻ và chứng minh được
nên
Trong
∆
vuông MAD tính được
Chọn A.
![](https://rs.olm.vn/images/avt/0.png?1311)
Chọn gốc toạ độ tại A. Các tia Ox; Oy; Oz lần lượt trùng với các tia AD, AB, AS ta có tọa độ điểm là A(0;0;0); D(2;0;0); B ( 0 ; 2 ; 0 ) ; S ( 0 ; 0 ; 2 ) ; C 2 ; 2 ; 0 ; M 0 ; 2 2 ; 2 2 ; N 1 ; 0 ; 0
Do vậy
và
Chọn đáp án B.
Chọn C