Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Gọi giao điểm của AC và BD là O trong mp(ABCD)
\(O\in AC\subset\left(SAC\right)\)
\(O\in BD\subset\left(SBD\right)\)
Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)
mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)
nên (SAC) giao (SBD)=SO
Xét ΔSDC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔSDC
=>PN//SC
PN//SC
SC\(\subset\)(SBC)
PN không nằm trong mp(SBC)
Do đó: PN//(SBC)

1: Trong mp(ABCD), gọi O là giao điểm của AC và BD
O∈AC⊂(SAC)
O∈BD⊂(SBD)
Do đó: O∈(SAC) giao (SBD)(1)
S∈(SAC)
S∈(SBD)
Do đó: S∈(SAC) giao (SBD)(2)
Từ (1),(2) suy ra (SAC) giao (SBD)=SO
Xét ΔDSC có
P,N lần lượt là trung điểm của DS,DC
=>PN là đường trung bình của ΔDSC
=>PN//SC
mà SC⊂(SBC)
nên PN//(SBC)
2: Chọn mp(SAD) có chứa SA
P∈SD⊂(SAD)
P∈(MNP)
Do đó: P∈(SAD) giao (MNP)(3)
Trong mp(ABCD), gọi K là giao điểm của MN và AD
K∈MN⊂(MNP)
K∈AD⊂(SAD)
DO đó: K∈(SAD) giao (MNP)(4)
Từ (3),(4) suy ra (SAD) giao (MNP)=PK
Gọi Q là giao điểm của PK và SA
=>Q là giao điểm của (MNP) và SA
Xét ΔNCM và ΔNDK có
\(\hat{NCM}=\hat{NDK}\) (hai góc so le trong, DK//MC)
NC=ND
\(\hat{CNM}=\hat{DNK}\) (hai góc đối đỉnh)
Do đó: ΔNCM=ΔNDK
=>CM=DK
=>\(DK=\frac12BC=\frac12DA\)
=>\(KD=\frac13KA\)
Theo Meneleus, ta có:
\(\frac{KD}{KA}\cdot\frac{QA}{QS}\cdot\frac{PS}{PD}=1\)
=>\(\frac13\cdot\frac{QA}{QS}\cdot1=1\)
=>\(\frac{QA}{QS}=1:\frac13=3\)
=>QA=3QS
SQ+QA=SA
=>SA=SQ+3SQ=4SQ
=>\(\frac{SQ}{SA}=\frac14\)

a. Do M, N là trung điểm AD, BC \(\Rightarrow MN||AB||CD\)
Gọi Q là trung điểm SA
\(\Rightarrow PQ\) là đường trung bình tam giác SAB
\(\Rightarrow PQ||AB\Rightarrow PQ||MN\Rightarrow Q\in\left(MNP\right)\)
\(\Rightarrow Q=SA\cap\left(MNP\right)\)
b. Do Q là trung điểm SA, M là trung điểm AD
\(\Rightarrow MQ\) là đường trung bình tam giác SAD \(\Rightarrow MQ||SD\)
Mà \(MQ\in\left(MNP\right)\Rightarrow SD||\left(MNP\right)\)
Tương tự ta có \(NP||SC\) (đường trung bình) (1)
\(\left\{{}\begin{matrix}AM=NC=\dfrac{1}{2}AD\\AM||NC\end{matrix}\right.\) \(\Rightarrow AN||CM\) (2)
(1);(2) \(\Rightarrow\left(SMC\right)||\left(ANP\right)\)
c. Đề bài không tồn tại điểm L