Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi O là tâm của hình bình hành ABCD, nối S O ∩ A M = I
Qua I kẻ đương thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra S H S B = S K S D = S I S O .
Điểm M ∈ S C thỏa mãn 5 S M = 2 S C ⇒ S M S C = 2 5
Xét tam giác SAC, có:
M S M C . A C A O . I O I S = 1 ⇒ I O S I = 4 3 ⇒ S I S O = 3 7
Khi đó:
V S . A K M V S . A D C = S K S D . S M S C ; V S . A H M V S . A B C = S H S B . S M S C
Suy ra:
V S . A H M K V S . A B C D = S M S C . S H S B = 2 5 . 3 7 = 6 35 ⇒ V S . A H M K = 6 36 V S . A B C D
Đáp án A
Phương pháp giải:
Dùng định lí Thalet và phương pháp tỉ số thể tích để tính thể tích khối chóp cần tìm
Chọn A
Xét một trường hợp đặc biệt của các điểm M, E, F ta tính được T = 1.
Đáp án D
Phương pháp giải:
Dùng định lí Thalet, định lý Menelaus và phương pháp tỉ số thể tích để tính thể tích khối chóp theo tham số k.
Khảo sát hàm số chứa biến k để tìm giá trị lớn nhất – giá trị nhỏ nhất
Lời giải:
Gọi O là tâm của hình bình hành ABCD và I = S O ∩ A M .
Ba điểm M,A,I thẳng hàng nên áp dụng định lý Menelaus cho tam giác SOC ta có: S M M C . C A A O . O I I S = 1 ⇒ O I S I = 1 = k 2 .
Chọn D.
Phương pháp:
+) Sử dụng công thức tỉ lệ thể tích:
Cho khối chóp S.ABC, các điểm A 1 , B 1 , C 1 lần lượt thuộc SA, SB, SC
+) Chia khối chóp đã cho thành các khối chóp nhỏ, tính thể tích của từng khối chóp.
Cách giải:
I,J lần lượt là trung điểm của SM, SC (do K là trung điểm của SA)
Trong (SAB), gọi N là giao điểm của IK và AB
Trong (ABCD), kẻ đường thẳng qua N song song AC, cắt AD tại Q, CD tại P.
Khi đó, dễ dàng chứng minh P, Q lần lượt là trung điểm của CD, AD và
*) Gọi L là trung điểm của SD
Khi đó, khối đa diện SKJPQD được chia làm 2 khối: hình lăng trụ tam giác KJL.QPD và hình chóp tam giác S.KJL
Đáp án D
Do α qua M song song với mặt đáy nên em kẻ MN / / AB N ∈ SB ;
Chú ý: Em nhớ rằng, công thức tính tỉ số thể tích chỉ áp dụng cho khối chóp tam giác. Còn với khối chóp tứ giác, ngũ giác, lục giác,… em cần chia ra thành các khối chóp tam giác và áp dụng công thức.
Công thức giải nhanh:
Cắt khối chóp bởi mặt phẳng song song với đáy: Xét khối chóp S . A 1 A 2 . .. A n , mặt phẳng (P) song song với mặt đáy cắt cạnh SA 1 tại m thỏa mãn SM SA 1 = k . Khi đó (P) chia khối chóp thành 2 khối đa diện, trong đó khối đa diện chứa đỉnh S có thể tích V' và khối đa diện ban đầu có thể tích V thì V ' V = k 3
Nên ⇒ V SMNPQ V SABCD = ( 1 3 ) 2 = 1 27
Đáp án C
Giả sử S D → = m . S M → ; S B → = n . S N → .
S A → + S C → = S B → + S D →
Do A; M; N; K đồng phẳng nên m + n = 3 .
V S . A K M V S . A B C = 1 2 .1. 1 m = 1 2 m ⇒ V S . A K M V = 1 4 m
Tương tự ta có V S . A K N V = 1 4 n ⇒ V ' V = 1 4 . m + n m n = 3 4 m n ≥ 3 m + n 2 = 3 3 2 = 1 3 .
Dấu bằng xảy ra khi m = n = 1,5 .
Đáp án D
Gọi O là tâm của hình bình hành ABCD, nối S O ∩ A M = I .
Qua I kẻ đường thẳng d, song song với BD cắt SB, SD lần lượt tại H, K suy ra