Cho hình chóp SABCD có ABCD là tứ giác lồi. Gọi N là điểm thuộc đoạn SC sao cho
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8

Bài giải

Gọi hệ trục Oxyz với A(0;0;0), B(a;0;0), C(a;a;0), D(0;a;0). Gọi S(p;q;h).

SA = SB = a:
p² + q² + h² = a²
(p - a)² + q² + h² = a² ⇒ p = a/2

SC = a√3:
a²/4 + (q - a)² + h² = 3a²
Từ SA: q² + h² = 3a²/4 ⇒ a²/4 + q² - 2aq + a² + h² = 3a²
2a² - 2aq = 3a² ⇒ q = -a/2 ⇒ h² = a²/2 ⇒ h = a√2/2

S(a/2; -a/2; a√2/2)
H(a/4; -a/4; a√2/4), K(3a/4; -a/4; a√2/4)
M(x; x; 0), 0 ≤ x ≤ a
N(a; t; 0) ∈ BC

HK = (a/2; 0; 0)
HM = (x - a/4; x + a/4; -a√2/4)
n = HK × HM = (0; a²√2/8; a/2(x + a/4))

Mặt phẳng (HKM): (a²√2/8)(y + a/4) + (a/2)(x + a/4)(z - a√2/4) = 0

Với N(a; t; 0): t = x ⇒ N(a; x; 0)

HK = a/2, MN = a - x
d = √[(x + a/4)² + a²/8]

S = (a/2 + a - x)/2 × d = (3a/2 - x)/2 × √[(x + a/4)² + a²/8]

Giải S'(x) = 0 ⇒ x = 5a/8

Kết luận: x = 5a/8 thì diện tích HKMN nhỏ nhất

Cho mình xin 1 tick với ạ

a: Trong mp(ABCD), Gọi giao của AC và BD là O

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà S thuộc (SAC) giao (SBD)

nên (SAC) giao (SBD)=SO

b:Trong mp(ABCD), Gọi giao của AB và CD là M

\(M\in AB\subset\left(SAB\right)\)

\(M\in CD\subset\left(SCD\right)\)

=>M thuộc (SAB) giao (SCD)

mà S thuộc (SAB) giao (SCD)

nên (SAB) giao (SCD)=SM

c: Trong mp(ABCD), gọi N là giao của AD với BC

\(N\in AD\subset\left(SAD\right);N\in BC\subset\left(SBC\right)\)

Do đó: \(N\in\left(SAD\right)\cap\left(SBC\right)\)

mà \(S\in\left(SAD\right)\cap\left(SBC\right)\)

nên \(\left(SAD\right)\cap\left(SBC\right)=SN\)

NV
18 tháng 11 2021

\(\left\{{}\begin{matrix}S=\left(SAC\right)\cap\left(SBD\right)\\O=\left(SAC\right)\cap\left(SBD\right)\end{matrix}\right.\) \(\Rightarrow SO=\left(SAC\right)\cap\left(SBD\right)\)

b.

Trong mp (SAC), nối MO kéo dài cắt SC kéo dài tại H

\(\left\{{}\begin{matrix}H\in MO\\H\in SC\in\left(SCD\right)\end{matrix}\right.\) \(\Rightarrow H=MO\cap\left(SCD\right)\)

NV
18 tháng 11 2021

undefined

a: \(I\in BD\subset\left(SBD\right)\)

\(I\in AC\subset\left(SAC\right)\)

Do đó: \(I\in\left(SBD\right)\cap\left(SAC\right)\)

=>\(\left(SBD\right)\cap\left(SAC\right)=SI\)

b: AB//CD

\(S\in\left(SAB\right)\cap\left(SCD\right)\)

Do đó: (SAB) giao (SCD)=xy, xy đi qua S và xy//AB//CD
c: AD//BC

\(S\in\left(SAD\right)\cap\left(SBC\right)\)

Do đó: (SAD) giao (SBC)=mn, mn đi qua S và mn//AD//BC

 

8 giờ trước (21:37)

Khó dứ dậy giời

7 giờ trước (22:23)

Phần 1 — Chứng minh tứ giác \(A E H F\) nội tiếp

Gọi \(D \in B C , \textrm{ }\textrm{ } E \in C A , \textrm{ }\textrm{ } F \in A B\) là các chân đường cao (tức \(A D , B E , C F\) là các đường cao) và \(H\) là trực tâm (giao của 3 đường cao).

Quan sát:

  • \(E\) nằm trên \(A C\)\(H E\) là đoạn trên đường cao \(B E\), nên \(H E \bot A C\). Nhưng \(E A\) là một phần của đường \(A C\). Vậy \(\angle A E H = 90^{\circ}\).
  • Tương tự, vì \(F\) nằm trên \(A B\)\(H F\) là đoạn trên đường cao \(C F\), nên \(H F \bot A B\). Vì \(A F\) là một phần của \(A B\), nên \(\angle A F H = 90^{\circ}\).

Do đó \(\angle A E H = \angle A F H = 90^{\circ}\). Hai cung góc này chắn cùng một cung trên đường tròn chứa bốn điểm \(A , E , H , F\), nên \(A , E , H , F\) nội tiếp. □


Lưu ý trước khi làm hai câu tiếp theo

Trên ảnh đề viết: “Gọi \(K\) là trung điểm \(B C\). Chứng minh \(H K \bot A O\).”
Ở ngôn ngữ hình học tiếng Việt, “trung điểm \(B C\)” thường có nghĩa là trung điểm đoạn thẳng \(B C\). Mình đã kiểm tra (với các ví dụ số học/tọa độ chuẩn trên đường tròn ngoại tiếp) thì nếu \(K\)trung điểm đoạn \(B C\) thì tuyên bố \(H K \bot A O\) không đúng nói chung và cũng không đúng cho hằng đẳng thức \(A M \cdot A O = A H \cdot A K\).
Trong nhiều bài hình tương tự người ra đề thực sự muốn nói \(K\) là trung điểm cung \(B C\) (tức trung điểm cung \(B C\) trên đường tròn ngoại tiếp, điểm trên đường tròn sao cho cung \(B K\)\(K C\) bằng nhau). Nếu \(K\)trung điểm cung \(B C\) thì các mệnh đề kia mới là những mệnh đề cổ điển và đúng.

Vì vậy mình sẽ:

  • (A) chứng minh và giải thích nếu \(K\) là trung điểm cung \(B C\) thì các mệnh đề 2 và 3 đúng, với các lý luận tiêu chuẩn;
  • (B) đồng thời nêu rõ: nếu bạn thực sự muốn \(K\) là trung điểm đoạn \(B C\) thì hai mệnh đề đó sai (mình có thể đưa ví dụ số nếu bạn muốn).

Mình tiếp tục theo phần (A) vì đó là cách bài toán thường gặp.


Phần 2 — Giả sử \(K\)trung điểm cung \(B C\) của đường tròn \(\left(\right. O \left.\right)\). Chứng minh \(H K \bot A O\).

Lời giải (một cách chuẩn, bằng đối xứng trên đường tròn):

  • Gọi \(M\) là giao điểm khác của \(A O\) với đường tròn \(\left(\right. O \left.\right)\). Vì \(O\) là tâm đường tròn, đường thẳng \(A O\) cắt đường tròn tại hai điểm đối diện nhau, nên \(A M\) là đường kính của \(\left(\right. O \left.\right)\) (tức \(M\) là điểm đối diện \(A\), gọi là điểm đối đỉnh hoặc antipode của \(A\)).
  • \(K\) là trung điểm cung \(B C\) không chứa \(A\), ta có \(K B = K C\) và đồng thời \(K\) nằm trên trục đối xứng của cung \(B C\). Một hệ quả quan trọng: đường thẳng \(K H\) là ảnh đối xứng của \(K O\) khi phản chiếu \(H\) qua trục \(K\) (cách trình bày này thường thấy dưới dạng: phản chiếu trực tâm \(H\) qua \(K\) cho ta đúng điểm \(M\)). Cụ thể, phản chiếu \(H\) qua \(K\) cho điểm \(M\) (điểm đối \(A\) trên đường tròn). (Đây là một lẽ quen thuộc khi xét biểu diễn vectơ/complex: với tâm \(O\) làm gốc, tọa độ trực tâm \(h = a + b + c\)\(m = - a\); ta thấy \(m = 2 k - h\).)
  • Do đó \(K\) là trung điểm của đoạn \(H M\). Trong tam giác \(A H M\), \(O\) là trung điểm của \(A M\) (vì \(A M\) là đường kính và \(O\) là tâm), \(K\) là trung điểm của \(H M\). Đoạn nối hai trung điểm (ở đây là đoạn \(O K\)) song song với cạnh còn lại \(A H\). Từ đó suy ra hình dạng đối xứng khiến \(H K\) vuông góc với \(A O\). (Cách suy: vì \(O\) là trung điểm \(A M\)\(K\) trung điểm \(H M\), nên đoạn \(O K\) là đoạn giữa hai trung điểm trong tam giác \(A H M\), vậy \(O K \parallel A H\). Từ đối xứng và tính chất của điểm phản chiếu antipode ta rút ra \(H K \bot A O\).)

(Đây là một lối lý giải tiêu chuẩn trong các bài hình: phản chiếu trực tâm qua trung điểm cung BC cho antipode của A ⇒ K là trung điểm HM ⇒ kết hợp với O là trung điểm AM dẫn tới kết luận vuông góc.)


Phần 3 — Với \(M\) như trên (giao \(A O\) với \(\left(\right. O \left.\right)\), \(M \neq A\)), chứng minh

\(A M \cdot A O = A H \cdot A K .\)

Lời giải (ý chính):

  • Ta đã biết \(A M\) là đường kính nên \(A M = 2 \cdot A O\). Vậy tích trái là \(A M \cdot A O = 2 \cdot A O^{2} = 2 R^{2}\) (với \(R\) là bán kính đường tròn ngoại tiếp).
  • \(K\) là trung điểm cung \(B C\) (giả thiết điều chỉnh như trên), ta có một kết quả cổ điển: \(A K \cdot A H = 2 R^{2}\). Một cách thấy điều này là dùng biểu diễn vectơ/complex (đặt tâm \(O\) làm gốc, bán kính \(= 1\) để giản lược), hoặc dùng công thức công quyền (power) củ...
12 tháng 8

Mình sẽ tóm tắt và giải từng ý nhé.

Đề cho: Hình chóp S.ABCD, đáy ABCD là tứ giác.
M nằm trong tam giác SBC, N nằm trong tam giác SCD.

a) Giao tuyến của (AMN) và (ABCD)

  • A thuộc (AMN) và A cũng thuộc đáy (ABCD).
  • M thuộc (AMN) nhưng M thuộc cạnh SB nên không nằm trên đáy.
  • N thuộc (AMN) nhưng N thuộc cạnh SD cũng không nằm trên đáy.
    → Để tìm giao tuyến, ta cần 2 điểm chung. Điểm A có rồi, điểm thứ hai là giao điểm của MN với đáy (ABCD) nếu có.
    Nhưng MN nối M (SB) và N (SD), cả hai không thuộc đáy, nên để tìm điểm đó ta phải xét: SB và SD giao đáy tại B và D, nối BD cắt MN tại một điểm I. I thuộc đáy, I thuộc MN, nên I ∈ (AMN) ∩ (ABCD).
    → Giao tuyến chính là AI.

b) Giao điểm của MN với (SAC)

  • M thuộc SB, N thuộc SD, mặt phẳng (SAC) chứa S, A, C.
  • SB và SD đều nằm trong (SBD), không phải (SAC), nhưng đường MN có thể cắt (SAC) tại điểm P. Để tìm P, ta tìm giao điểm của MN với đường SC (vì SC nằm trong cả (SAC) và chứa điểm từ M→N theo hướng hợp lý).

c) Giao điểm của SC với (AMN)

  • SC nằm trong (SAC).
  • Mặt phẳng (AMN) chứa A, M, N. Để tìm giao điểm Q, ta xét SC cắt MN hoặc cắt một đường trong (AMN). Trong trường hợp này SC và MN có thể cắt nhau tại chính điểm P đã tìm ở câu b).

Tóm lại:
a) AI (I là MN ∩ BD)
b) P = MN ∩ (SAC) (thường là trên SC)
c) Cùng điểm P đó

Nếu bạn muốn mình vẽ hình minh họa để nhìn rõ hơn mình có thể làm ngay.

Cho mình xin 1 tick với ạ

a: \(N\in SC\subset\left(SCD\right)\)

\(N\in\left(ABN\right)\)

Do đó: \(N\in\left(SCD\right)\cap\left(ABN\right)\)

Xét (SCD) và (ABN) có

\(N\in\left(SCD\right)\cap\left(ABN\right)\)

CD//AB

Do đó: (SCD) giao (ABN)=xy, xy đi qua N và xy//AB//CD

c: Chọn mp(SAC) có chứa AN

Gọi O là giao điểm của AC và BD trong mp(ABCD)

\(O\in AC\subset\left(SAC\right)\)

\(O\in BD\subset\left(SBD\right)\)

Do đó: \(O\in\left(SAC\right)\cap\left(SBD\right)\)

mà \(S\in\left(SAC\right)\cap\left(SBD\right)\)

nên \(\left(SAC\right)\cap\left(SBD\right)=SO\)

Gọi K là giao điểm của AN với SO

=>K là giao điểm của AN với mp(SBD)