K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 7 2019

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

⇒ (SCD) ⊥ (SAD)

Gọi I là trung điểm của đoạn AB. Ta có AICD là hình vuông và IBCD là hình bình hành. Vì DI // CB và DI ⊥ CA nên AC ⊥ CB. Do đó CB ⊥ (SAC).

Vậy (SBC) ⊥ (SAC).

b) Ta có:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

c) Giải sách bài tập Toán 11 | Giải sbt Toán 11

Vậy (α) là mặt phẳng chứa SD và vuông góc với mặt phẳng (SAC) chính là mặt phẳng (SDI). Do đó thiết diện của (α) với hình chóp S.ABCD là tam giác đều SDI có chiều dài mỗi cạnh bằng a√2. Gọi H là tâm hình vuông AICD ta có SH ⊥ DI và Giải sách bài tập Toán 11 | Giải sbt Toán 11 .

Tam giác SDI có diện tích:

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a: CD vuông góc AD

CD vuông góc SA

=>CD vuông góc (SAD)

=>(SAD) vuông góc (SCD)

b: (SCD) giao (ABCD)=CD

CD vuông góc (SAD)

=>CD vuông góc SD

CD vuông góc SD

AD vuông góc CD

mà SD thuộc (SCD) và AD thuộc (ABCD)

nên ((SCD);(ABCD))=(SD;AD)=góc SDA

tan SDA=SA/AD=căn 3/2

=>góc SDA=41 độ

a: (SBD) giao (ABCD)=BD

AB vuông góc BD

SB vuông góc BD

=>góc cần tìm là góc SBA

30 tháng 8 2017

Đáp án A

Ta có: B là hình chiếu của B lên  (ABCD)

A là hình chiếu của S lên (ABCD)

Suy ra góc tạo bởi (ABCD)  là góc  φ = S B A ^

 

NV
19 tháng 3 2022

a.

\(\left\{{}\begin{matrix}SA\perp\left(ABCD\right)\Rightarrow SA\perp AB\\AB\perp AD\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AB\perp\left(SAD\right)\)

b.

Từ câu a ta có \(AB\perp\left(SAD\right)\)

Mà \(SD\in\left(SAD\right)\)

\(\Rightarrow AB\perp SD\)

5 tháng 3 2022

Bạn tham khảo:

undefined

a: DC vuông góc AD

DC vuông góc SA
=>DC vuông góc (SAD)

b: (SD;(ABCD))=(DS;DA)=góc SDA

tan SDA=SA/AD=căn 3

=>góc SDA=60 độ

10 tháng 5 2023

a: Sửa đề; BC vuông góc SB

BC vuông góc AB

BC vuông góc SA

=>BC vuôg góc (SAB)

=>CB vuông góc SB

c: (SO;(SCD))=(SO;SK)=góc KSO(OK vuông góc DC tại K)

\(AO=\dfrac{AC}{2}=1.5a\)

\(SA=\sqrt{SC^2-AC^2}=\sqrt{\left(5a\right)^2-\left(3a\right)^2}=4a\)

\(SO=\sqrt{SA^2+AO^2}=\dfrac{a\sqrt{73}}{2}\)

\(AD=BC=\sqrt{\left(3a\right)^2-a^2}=2a\sqrt{2}\)

Xét ΔACD có

O là trung điểm của AC

OK//AD

=>K là trung điểm của CD

=>DK=CK=a/2

\(AK=\sqrt{\left(2a\sqrt{2}\right)^2+\left(\dfrac{a}{2}\right)^2}=\dfrac{a\sqrt{33}}{2}\)

\(SK=\sqrt{SA^2+AK^2}=\sqrt{\left(4a\right)^2+\dfrac{33}{4}a^2}=\dfrac{a\sqrt{97}}{2}\)

OK=AD/2=a căn 2

\(SO=\dfrac{a\sqrt{73}}{2}\)

\(cosKSO=\dfrac{SK^2+SO^2-OK^2}{2\cdot SK\cdot SO}\simeq0.96\)

=>góc KSO=16 độ

Câu c bn ch c/m đc OK vuông góc vs mp (SCD) 

Thì sao xác định đc góc cần tìm là OSK