Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Sửa đề; SA=SB=SC=SD=2a
SA=SB
OA=OB
=>SO là trung trực của AB
=>SO vuông góc AB(2)
SA=SD
OA=OD
=>SO là trung trực của AD
=>SO vuông góc AD(1)
Từ (1), (2) suy ra SO vuông góc (ABCD)
(SC;(ABCD))=(CS;CO)=góc SCO
\(OC=\dfrac{a\sqrt{2}}{2}\)
\(SO=\sqrt{SA^2+AO^2}\)
\(=\sqrt{\left(2a\right)^2+\left(\dfrac{a\sqrt{2}}{2}\right)^2}=\sqrt{4a^2+\dfrac{1}{2}a^2}=\dfrac{3}{\sqrt{2}}a\)
\(SC=\sqrt{SO^2+OC^2}=\sqrt{\dfrac{9}{2}a^2+\dfrac{1}{2}a^2}=a\sqrt{5}\)
\(cosSCO=\dfrac{OC}{SC}\)
\(=\dfrac{a\sqrt{2}}{2}:a\sqrt{5}=\dfrac{\sqrt{2}}{2\sqrt{5}}\)
=>\(\widehat{SCO}\simeq72^0\)
=>\(\left(SC;\left(ABCD\right)\right)=72^0\)
Đề bài \(\Rightarrow SA\perp\left(ABCD\right)\)
\(3\overrightarrow{SM}=\overrightarrow{SB}+2\overrightarrow{SC}=\overrightarrow{SM}+\overrightarrow{MB}+2\overrightarrow{SM}+2\overrightarrow{MC}\)
\(\Leftrightarrow\overrightarrow{MB}+2\overrightarrow{MC}=\overrightarrow{0}\Rightarrow M\) là điểm nằm giữa BC đồng thời \(MB=2MC\Rightarrow\left\{{}\begin{matrix}MB=2\\MC=1\end{matrix}\right.\)
Tương tự, N nằm giữa CD sao cho \(NC=2\) ; \(ND=1\)
Qua N kẻ đường thẳng song song DM cắt AB kéo dài tại P
Tới đây thì vấn đề đơn giản: quy về tìm khoảng các giữa A và (SNP).
Kéo dài DM cắt AB kéo dài tại E, Talet: \(\dfrac{CD}{AE}=\dfrac{CM}{BM}=\dfrac{1}{2}\Rightarrow AE=2CD=6\)
Nối AN cắt DM tại F, Talet: \(\dfrac{NF}{AF}=\dfrac{DN}{AE}=\dfrac{1}{6}\Rightarrow\dfrac{NF}{AN}=\dfrac{1}{7}\)
\(\Rightarrow d\left(DM;SN\right)=d\left(DM;\left(SNP\right)\right)=d\left(F;\left(SNP\right)\right)=\dfrac{1}{7}d\left(A;\left(SNP\right)\right)\)
Tứ giác DNPE là hbh \(\Rightarrow DN=EP=1\Rightarrow AP=7\)
Tính k/c từ A đến (SNP) bạn tự hoàn thành nhé, rất cơ bản
Bài này nếu được áp dụng tọa độ của 12 thì rất lẹ
Em kiểm tra lại đề, \(\left(\alpha\right)\) đi qua AI nên nó không thể cắt SA tại M được nữa (vì nó đi qua A nên đã cắt SA tại A rồi)
Chọn D.
- Gọi G là trọng tâm tam giác ABC.
- Hình chóp S.ABC là hình chóp đều nên SG ⊥ (ABC).
→ Góc giữa hai mặt phẳng (SBD) và (ABCD) bằng 90 °
a.
Do AB song song DC nên góc giữa SC và AB là góc giữa SC và CD, cùng là góc SCD
Áp dụng định lý hàm cosin:
\(cos\widehat{SCD}=\dfrac{SC^2+CD^2-SD^2}{2SC.CD}=\dfrac{1}{4}\)
\(\Rightarrow\widehat{SCD}\approx75^031'\)
b.
Gọi O là tâm đáy, do chóp có đáy là hình vuông và các cạnh bên bằng nhau nên chóp là chóp đều
\(\Rightarrow SO\perp\left(ABCD\right)\)
\(\Rightarrow\Delta OAB\) là hình chiếu vuông góc của SAB lên (ABCD)
\(OA=OB=\dfrac{1}{2}AC=\dfrac{1}{2}\sqrt{AB^2+BC^2}=a\)
Mặt khác OA vuông góc OB (2 đường chéo hình vuông)
\(\Rightarrow S_{OAB}=\dfrac{1}{2}OA.OB=\dfrac{a^2}{2}\)
\(BD=a\sqrt{2}\)
\(\widehat{\left(\overrightarrow{BD};\overrightarrow{BS}\right)}=\widehat{SBD}=\dfrac{SB^2+BD^2-SD^2}{2SB.BD}=\dfrac{a^2+2a^2-a^2}{2a.a\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
\(\Rightarrow\widehat{\left(\overrightarrow{BD};\overrightarrow{BS}\right)}=45^0\)
thầy ơi bưa trước thầy em có giảng cái cách mà SB=SD thì suy ra SBD là nửa hình vuông nên góc SBD 45 độ v đúng ko thầy?